TY - JOUR
T1 - Identifying dementia outcomes in UK Biobank: a validation study of primary care, hospital admissions and mortality data
AU - Wilkinson, Tim
AU - Schnier, Christian
AU - Bush, Kathryn
AU - Rannikmäe, Kristiina
AU - Henshall, David E.
AU - Lerpiniere, Chris
AU - Allen, Naomi E.
AU - Flaig, Robin
AU - Russ, Tom C.
AU - Bathgate, Deborah
AU - Pal, Suvankar
AU - O’Brien, John T.
AU - Sudlow, Cathie L.M.
AU - Dementias Platform UK and UK Biobank
PY - 2019/6/15
Y1 - 2019/6/15
N2 - Prospective, population-based studies that recruit participants in mid-life are valuable resources for dementia research. Follow-up in these studies is often through linkage to routinely-collected healthcare datasets. We investigated the accuracy of these datasets for dementia case ascertainment in a validation study using data from UK Biobank—an open access, population-based study of > 500,000 adults aged 40–69 years at recruitment in 2006–2010. From 17,198 UK Biobank participants recruited in Edinburgh, we identified those with ≥ 1 dementia code in their linked primary care, hospital admissions or mortality data and compared their coded diagnoses to clinical expert adjudication of their full-text medical record. We calculated the positive predictive value (PPV, the proportion of cases identified that were true positives) for all-cause dementia, Alzheimer’s disease and vascular dementia for each dataset alone and in combination, and explored algorithmic code combinations to improve PPV. Among 120 participants, PPVs for all-cause dementia were 86.8%, 87.3% and 80.0% for primary care, hospital admissions and mortality data respectively and 82.5% across all datasets. We identified three algorithms that balanced a high PPV with reasonable case ascertainment. For Alzheimer’s disease, PPVs were 74.1% for primary care, 68.2% for hospital admissions, 50.0% for mortality data and 71.4% in combination. PPV for vascular dementia was 43.8% across all sources. UK routinely-collected healthcare data can be used to identify all-cause dementia in prospective studies. PPVs for Alzheimer’s disease and vascular dementia are lower. Further research is required to explore the geographic generalisability of these findings.
AB - Prospective, population-based studies that recruit participants in mid-life are valuable resources for dementia research. Follow-up in these studies is often through linkage to routinely-collected healthcare datasets. We investigated the accuracy of these datasets for dementia case ascertainment in a validation study using data from UK Biobank—an open access, population-based study of > 500,000 adults aged 40–69 years at recruitment in 2006–2010. From 17,198 UK Biobank participants recruited in Edinburgh, we identified those with ≥ 1 dementia code in their linked primary care, hospital admissions or mortality data and compared their coded diagnoses to clinical expert adjudication of their full-text medical record. We calculated the positive predictive value (PPV, the proportion of cases identified that were true positives) for all-cause dementia, Alzheimer’s disease and vascular dementia for each dataset alone and in combination, and explored algorithmic code combinations to improve PPV. Among 120 participants, PPVs for all-cause dementia were 86.8%, 87.3% and 80.0% for primary care, hospital admissions and mortality data respectively and 82.5% across all datasets. We identified three algorithms that balanced a high PPV with reasonable case ascertainment. For Alzheimer’s disease, PPVs were 74.1% for primary care, 68.2% for hospital admissions, 50.0% for mortality data and 71.4% in combination. PPV for vascular dementia was 43.8% across all sources. UK routinely-collected healthcare data can be used to identify all-cause dementia in prospective studies. PPVs for Alzheimer’s disease and vascular dementia are lower. Further research is required to explore the geographic generalisability of these findings.
KW - Alzheimer disease
KW - Cohort studies
KW - Data accuracy
KW - Dementia
KW - Predictive value of tests
KW - Validation studies
U2 - 10.1007/s10654-019-00499-1
DO - 10.1007/s10654-019-00499-1
M3 - Article
C2 - 30806901
AN - SCOPUS:85062611152
SN - 0393-2990
VL - 34
SP - 557
EP - 565
JO - European Journal of Epidemiology
JF - European Journal of Epidemiology
IS - 6
ER -