Abstract
Root growth alters soil fabric and consequently its mechanical and physical properties. Recent studies show that roots induce compaction of soil in their immediate vicinity, a region that is central for plant health. However, high quality quantification of root influence on the soil fabric, able to inform computational models is lacking from the literature. This study quantifies the relationship between soil physical characteristics and root growth, giving special emphasis on how roots in early stage formation influence the physical architecture of the surrounding soil structure. High-resolution X-ray micro-Computed Tomography (µCT) is used to acquire three dimensional images of two homogeneously-packed samples. It is observed that the void ratio profile extending from the soil-root interface into the bulk soil is altered by root growth. The roots considerably modify the immediate soil physical characteristics by creating micro cracks at the soil-root interface and by increasing void ratio. This paper presents the mechanisms that led to the observed structure as well as some of the implications that it has in such a dynamic zone.
Original language | English |
---|---|
Article number | 11005 |
Number of pages | 4 |
Journal | EPJ Web of Conferences |
Volume | 249 |
DOIs | |
Publication status | Published - 07 Jun 2021 |
Externally published | Yes |
Event | Powders & Grains: 9th International Conference on Micromechanics on Granular Media 2021 - Buenos Aires, Argentina Duration: 05 Jul 2021 → 06 Aug 2021 |