Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells

Emily Russell*, Victoria Dunne, Ben Russell, Hibaaq Mohamud, Mihaela Ghita, Stephen J. McMahon, Karl T. Butterworth, Giuseppe Schettino, Conor K. McGarry, Kevin M. Prise

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

122 Downloads (Pure)

Abstract

PURPOSE: The recent implementation of MR-Linacs has highlighted theranostic opportunities of contrast agents in both imaging and radiotherapy. There is a lack of data exploring the potential of superparamagnetic iron oxide nanoparticles (SPIONs) as radiosensitisers. Through preclinical 225 kVp exposures, this study aimed to characterise the uptake and radiobiological effects of SPIONs in tumour cell models in vitro and to provide proof-of-principle application in a xenograft tumour model.

METHODS: SPIONs were also characterised to determine their hydrodynamic radius using dynamic light scattering and uptake was measured using ICP-MS in 6 cancer cell lines; H460, MiaPaCa2, DU145, MCF7, U87 and HEPG2. The impact of SPIONs on radiobiological response was determined by measuring DNA damage using 53BP1 immunofluorescence and cell survival. Sensitisation Enhancement Ratios (SERs) were compared with the predicted Dose Enhancement Ratios (DEFs) based on physical absorption estimations. In vivo efficacy was demonstrated using a subcutaneous H460 xenograft tumour model in SCID mice by following intra-tumoural injection of SPIONs.

RESULTS: The hydrodynamic radius was found to be between 110 and 130 nm, with evidence of being monodisperse in nature. SPIONs significantly increased DNA damage in all cell lines with the exception of U87 cells at a dose of 1 Gy, 1 h post-irradiation. Levels of DNA damage correlated with the cell survival, in which all cell lines except U87 cells showed an increased sensitivity (P < 0.05) in the linear quadratic curve fit for 1 h exposure to 23.5 μg/ml SPIONs. There was also a 30.1% increase in the number of DNA damage foci found for HEPG2 cells at 2 Gy. No strong correlation was found between SPION uptake and DNA damage at any dose, yet the biological consequences of SPIONs on radiosensitisation were found to be much greater, with SERs up to 1.28 ± 0.03, compared with predicted physical dose enhancement levels of 1.0001. In vivo, intra-tumoural injection of SPIONs combined with radiation showed significant tumour growth delay compared to animals treated with radiation or SPIONs alone (P < 0.05).

CONCLUSIONS: SPIONs showed radiosensitising effects in 5 out of 6 cancer cell lines. No correlation was found between the cell-specific uptake of SPIONs into the cells and DNA damage levels. The in vivo study found a significant decrease in the tumour growth rate.

Original languageEnglish
Article number104
JournalRadiation oncology (London, England)
Volume16
DOIs
Publication statusPublished - 12 Jun 2021

Bibliographical note

Funding Information:
This work is a collaboration between Queen’s University Belfast, and the National Physical Laboratory, funded by the Medical Research Council (Ref: MR/P01593X/1).

Funding Information:
This work is a collaboration between Queen’s University Belfast, and the National Physical Laboratory, funded by the Medical Research Council (Ref: MR/P01593X/1). V. Dunne was supported by the LFT Charitable Trust and M. Ghita by the Tom Simms Memorial Fund. Thanks is given to Dr Jascindra Ravi of the Bio-metrology group at the National Physical Laboratory.

Publisher Copyright:
© 2021, The Author(s).

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Keywords

  • Nanoparticles
  • Radiobiology

ASJC Scopus subject areas

  • Oncology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells'. Together they form a unique fingerprint.

Cite this