Abstract
In this article, the authors introduce and study the performance of two novel parametric families of Nyquist intersymbol interference-free pulses. Using only two design parameters, the proposed pulses yield an enhanced performance compared to the sophisticated flipped-inverse hyperbolic secant (asech) filter, which was recently documented in the literature. Although the construction of parametric families originates from the work of Beaulieu and Damen, the authors' approach is based on the concept of 'inner' and 'outer' functions and for this reason a higher flexibility in the choice of the family members is achieved. The proposed pulses may decay slower than the original raised-cosine (RC) pulse outside the pulse interval, but exhibit a more pronounced decrease in the amplitudes of the two largest sidelobes and this accounts for their improved robustness to error probabilities. It is clearly shown, via simulation results, that a lower bit error rate (BER), compared to the existing pulses, can be achieved for different values of the roll-off factor and timing jitter. Moreover, a smaller maximum distortion as well as a more open-eye diagram are attained which further demonstrate the superiority of the proposed pulse shaping filters.
Original language | English |
---|---|
Pages (from-to) | 157-163 |
Number of pages | 7 |
Journal | IET SIGNAL PROCESSING |
Volume | 5 |
Issue number | 2 |
DOIs | |
Publication status | Published - 01 Apr 2011 |
Keywords
- Wireless communications
- signal processing
- Interference
ASJC Scopus subject areas
- Signal Processing
- Electrical and Electronic Engineering