Improvement of off-axis SABR plan verification results by using adapted dose reconstruction algorithms for the Octavius 4D system

Prakash Jeevanandam, Christina E Agnew, Denise M Irvine, Conor K McGarry

Research output: Contribution to journalArticle

Abstract

PURPOSE: Stereotactic ablative body radiotherapy (SABR) for lung patients can be performed with volumetric-modulated arc therapy (VMAT) plans using off-axis target geometry to allow treatment in their CBCT verified position. For patient-specific quality assurance measurements using the PTW Octavius 4D phantom (PTW, Freiburg, Germany) (OCT4D) in conjunction with an Octavius 1000SRS array (OCT1000) (PTW, Freiburg, Germany), repositioning the phantom off-axis is required to ensure the measurement area coincides with the tumor. The aim of this work is to quantify delivery errors using an array repositioned off-axis and evaluate new software which incorporates corrections for off-axis phantom measurements.

METHODS: Dynamic conformal arcs and 25 lung SABR plans were created with the isocenter at the patient midline and the target volume off-axis. Measurements were acquired with an OCT4D phantom in conjunction with a 729 array (PTW, Freiburg, Germany) (OCT729) placed at isocenter. These plans were recalculated and delivered to both the OCT729 and OCT1000 arrays repositioned so that the high-dose region was at the center of the phantom. Comparisons were made using VeriSoft v7.0 (PTW, Freiburg, Germany) and the newly implemented version 7.1 with 2%/2 mm gamma criterion (10% threshold) and results correlated with off-axis distance to the tumor.

RESULTS: Average pass rates for VeriSoft v7.0 significantly reduced from 92.7 ± 2.4% to 84.9 ± 4.1% when the phantom was repositioned compared to the isocenter setup for the OCT729. The gamma pass rates significantly decreased the further the phantom was moved off-axis. Significantly higher pass rates were observed for the OCT1000 of 95.7 ± 3.6% and a significant decrease in gamma pass rate with off-axis phantom distance was again observed. In contrast, even with phantom repositioning, the pass rates for analysis with VeriSoft v7.1 were 93.7 ± 2.1% and 99.4 ± 1.1% for OCT729 and OCT1000, respectively. No significant difference in gamma pass rate was observed with off-axis phantom position irrespective of array type with the new software.

CONCLUSION: The errors in QA phantom measurements due to dose reconstruction at off-axis target geometry have been demonstrated for conformal arcs and clinical VMAT SABR plans. A novel software solution implemented by the vendor to allow accurate pass rates has been tested. This solution enables high-resolution arrays with small active detection areas to be used for quality assurance of SABR treatment plans in the off-axis treatment position.

LanguageEnglish
Pages1738-1747
JournalMedical Physics
Volume45
Issue number4
Early online date11 Mar 2018
DOIs
Publication statusPublished - Apr 2018

Fingerprint

Radiosurgery
Germany
Intensity-Modulated Radiotherapy
Software
Lung
Neoplasms
Therapeutics

Keywords

  • Journal Article

Cite this

Jeevanandam, Prakash ; Agnew, Christina E ; Irvine, Denise M ; McGarry, Conor K. / Improvement of off-axis SABR plan verification results by using adapted dose reconstruction algorithms for the Octavius 4D system. In: Medical Physics. 2018 ; Vol. 45, No. 4. pp. 1738-1747.
@article{10ea3d2102074e90b9dd297b4e7c7d20,
title = "Improvement of off-axis SABR plan verification results by using adapted dose reconstruction algorithms for the Octavius 4D system",
abstract = "PURPOSE: Stereotactic ablative body radiotherapy (SABR) for lung patients can be performed with volumetric-modulated arc therapy (VMAT) plans using off-axis target geometry to allow treatment in their CBCT verified position. For patient-specific quality assurance measurements using the PTW Octavius 4D phantom (PTW, Freiburg, Germany) (OCT4D) in conjunction with an Octavius 1000SRS array (OCT1000) (PTW, Freiburg, Germany), repositioning the phantom off-axis is required to ensure the measurement area coincides with the tumor. The aim of this work is to quantify delivery errors using an array repositioned off-axis and evaluate new software which incorporates corrections for off-axis phantom measurements.METHODS: Dynamic conformal arcs and 25 lung SABR plans were created with the isocenter at the patient midline and the target volume off-axis. Measurements were acquired with an OCT4D phantom in conjunction with a 729 array (PTW, Freiburg, Germany) (OCT729) placed at isocenter. These plans were recalculated and delivered to both the OCT729 and OCT1000 arrays repositioned so that the high-dose region was at the center of the phantom. Comparisons were made using VeriSoft v7.0 (PTW, Freiburg, Germany) and the newly implemented version 7.1 with 2{\%}/2 mm gamma criterion (10{\%} threshold) and results correlated with off-axis distance to the tumor.RESULTS: Average pass rates for VeriSoft v7.0 significantly reduced from 92.7 ± 2.4{\%} to 84.9 ± 4.1{\%} when the phantom was repositioned compared to the isocenter setup for the OCT729. The gamma pass rates significantly decreased the further the phantom was moved off-axis. Significantly higher pass rates were observed for the OCT1000 of 95.7 ± 3.6{\%} and a significant decrease in gamma pass rate with off-axis phantom distance was again observed. In contrast, even with phantom repositioning, the pass rates for analysis with VeriSoft v7.1 were 93.7 ± 2.1{\%} and 99.4 ± 1.1{\%} for OCT729 and OCT1000, respectively. No significant difference in gamma pass rate was observed with off-axis phantom position irrespective of array type with the new software.CONCLUSION: The errors in QA phantom measurements due to dose reconstruction at off-axis target geometry have been demonstrated for conformal arcs and clinical VMAT SABR plans. A novel software solution implemented by the vendor to allow accurate pass rates has been tested. This solution enables high-resolution arrays with small active detection areas to be used for quality assurance of SABR treatment plans in the off-axis treatment position.",
keywords = "Journal Article",
author = "Prakash Jeevanandam and Agnew, {Christina E} and Irvine, {Denise M} and McGarry, {Conor K}",
note = "{\circledC} 2018 Crown copyright. Medical Physics {\circledC} 2018 American Association of Physicists in Medicine. This article is published with the permission of the Controller of HMSO and the Queen’s Printer for Scotland.",
year = "2018",
month = "4",
doi = "10.1002/mp.12805",
language = "English",
volume = "45",
pages = "1738--1747",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "4",

}

Improvement of off-axis SABR plan verification results by using adapted dose reconstruction algorithms for the Octavius 4D system. / Jeevanandam, Prakash; Agnew, Christina E; Irvine, Denise M; McGarry, Conor K.

In: Medical Physics, Vol. 45, No. 4, 04.2018, p. 1738-1747.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Improvement of off-axis SABR plan verification results by using adapted dose reconstruction algorithms for the Octavius 4D system

AU - Jeevanandam, Prakash

AU - Agnew, Christina E

AU - Irvine, Denise M

AU - McGarry, Conor K

N1 - © 2018 Crown copyright. Medical Physics © 2018 American Association of Physicists in Medicine. This article is published with the permission of the Controller of HMSO and the Queen’s Printer for Scotland.

PY - 2018/4

Y1 - 2018/4

N2 - PURPOSE: Stereotactic ablative body radiotherapy (SABR) for lung patients can be performed with volumetric-modulated arc therapy (VMAT) plans using off-axis target geometry to allow treatment in their CBCT verified position. For patient-specific quality assurance measurements using the PTW Octavius 4D phantom (PTW, Freiburg, Germany) (OCT4D) in conjunction with an Octavius 1000SRS array (OCT1000) (PTW, Freiburg, Germany), repositioning the phantom off-axis is required to ensure the measurement area coincides with the tumor. The aim of this work is to quantify delivery errors using an array repositioned off-axis and evaluate new software which incorporates corrections for off-axis phantom measurements.METHODS: Dynamic conformal arcs and 25 lung SABR plans were created with the isocenter at the patient midline and the target volume off-axis. Measurements were acquired with an OCT4D phantom in conjunction with a 729 array (PTW, Freiburg, Germany) (OCT729) placed at isocenter. These plans were recalculated and delivered to both the OCT729 and OCT1000 arrays repositioned so that the high-dose region was at the center of the phantom. Comparisons were made using VeriSoft v7.0 (PTW, Freiburg, Germany) and the newly implemented version 7.1 with 2%/2 mm gamma criterion (10% threshold) and results correlated with off-axis distance to the tumor.RESULTS: Average pass rates for VeriSoft v7.0 significantly reduced from 92.7 ± 2.4% to 84.9 ± 4.1% when the phantom was repositioned compared to the isocenter setup for the OCT729. The gamma pass rates significantly decreased the further the phantom was moved off-axis. Significantly higher pass rates were observed for the OCT1000 of 95.7 ± 3.6% and a significant decrease in gamma pass rate with off-axis phantom distance was again observed. In contrast, even with phantom repositioning, the pass rates for analysis with VeriSoft v7.1 were 93.7 ± 2.1% and 99.4 ± 1.1% for OCT729 and OCT1000, respectively. No significant difference in gamma pass rate was observed with off-axis phantom position irrespective of array type with the new software.CONCLUSION: The errors in QA phantom measurements due to dose reconstruction at off-axis target geometry have been demonstrated for conformal arcs and clinical VMAT SABR plans. A novel software solution implemented by the vendor to allow accurate pass rates has been tested. This solution enables high-resolution arrays with small active detection areas to be used for quality assurance of SABR treatment plans in the off-axis treatment position.

AB - PURPOSE: Stereotactic ablative body radiotherapy (SABR) for lung patients can be performed with volumetric-modulated arc therapy (VMAT) plans using off-axis target geometry to allow treatment in their CBCT verified position. For patient-specific quality assurance measurements using the PTW Octavius 4D phantom (PTW, Freiburg, Germany) (OCT4D) in conjunction with an Octavius 1000SRS array (OCT1000) (PTW, Freiburg, Germany), repositioning the phantom off-axis is required to ensure the measurement area coincides with the tumor. The aim of this work is to quantify delivery errors using an array repositioned off-axis and evaluate new software which incorporates corrections for off-axis phantom measurements.METHODS: Dynamic conformal arcs and 25 lung SABR plans were created with the isocenter at the patient midline and the target volume off-axis. Measurements were acquired with an OCT4D phantom in conjunction with a 729 array (PTW, Freiburg, Germany) (OCT729) placed at isocenter. These plans were recalculated and delivered to both the OCT729 and OCT1000 arrays repositioned so that the high-dose region was at the center of the phantom. Comparisons were made using VeriSoft v7.0 (PTW, Freiburg, Germany) and the newly implemented version 7.1 with 2%/2 mm gamma criterion (10% threshold) and results correlated with off-axis distance to the tumor.RESULTS: Average pass rates for VeriSoft v7.0 significantly reduced from 92.7 ± 2.4% to 84.9 ± 4.1% when the phantom was repositioned compared to the isocenter setup for the OCT729. The gamma pass rates significantly decreased the further the phantom was moved off-axis. Significantly higher pass rates were observed for the OCT1000 of 95.7 ± 3.6% and a significant decrease in gamma pass rate with off-axis phantom distance was again observed. In contrast, even with phantom repositioning, the pass rates for analysis with VeriSoft v7.1 were 93.7 ± 2.1% and 99.4 ± 1.1% for OCT729 and OCT1000, respectively. No significant difference in gamma pass rate was observed with off-axis phantom position irrespective of array type with the new software.CONCLUSION: The errors in QA phantom measurements due to dose reconstruction at off-axis target geometry have been demonstrated for conformal arcs and clinical VMAT SABR plans. A novel software solution implemented by the vendor to allow accurate pass rates has been tested. This solution enables high-resolution arrays with small active detection areas to be used for quality assurance of SABR treatment plans in the off-axis treatment position.

KW - Journal Article

U2 - 10.1002/mp.12805

DO - 10.1002/mp.12805

M3 - Article

VL - 45

SP - 1738

EP - 1747

JO - Medical Physics

T2 - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 4

ER -