Inhibition of Secretion of Interleukin (IL)-12/IL-23 Family Cytokines by 4-Trifluoromethyl-celecoxib Is Coupled to Degradation via the Endoplasmic Reticulum Stress Protein HERP

Marian McLaughlin, Iraide Alloza, H.P. Quoc, Christopher Scott, Y. Hirabayashi, Koen Vandenbroeck

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Interleukin-12 (IL-12), p80, and IL-23 are structurally related cytokines sharing a p40 subunit. We have recently demonstrated that celecoxib and its COX-2-independent analogue 4-trifluoromethyl-celecoxib (TFM-C) inhibit secretion but not transcription of IL-12 (p35/p40) and p80 (p40/p40). This is associated with a mechanism involving altered cytokine-chaperone interaction in the endoplasmic reticulum (ER). In the present study, we found that celecoxib and TFM-C also block secretion of IL-23 (p40/p19 heterodimers). Given the putative ER-centric mode of these compounds, we performed a comprehensive RTPCR analysis of 23 ER-resident chaperones/foldases and associated co-factors. This revealed that TFM-C induced 1.5-3-fold transcriptional up-regulation of calreticulin, GRP78, GRP94, GRP170, ERp72, ERp57, ERdj4, and ERp29. However, more significantly, a 7-fold up-regulation of homocysteine-inducible ER protein (HERP) was observed. HERP is part of a high molecular mass protein complex involved in ER-associated protein degradation (ERAD). Using co-immunoprecipitation assays, we show that TFM-C induces protein interaction of p80 and IL-23 with HERP. Both HERP siRNA knockdown and HERP overexpression coupled to cycloheximide chase assays revealed that HERP is necessary for degradation of intracellularly retained p80 by TFM-C. Thus, our data suggest that targeting cytokine folding in the ER by small molecule drugs could be therapeutically exploited to alleviate in appropriate inflammation in autoimmune conditions.
Original languageEnglish
Pages (from-to)6960-6969
Number of pages10
JournalJournal of Biological Chemistry
Volume285
Issue number10
DOIs
Publication statusPublished - 05 Mar 2010

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Fingerprint Dive into the research topics of 'Inhibition of Secretion of Interleukin (IL)-12/IL-23 Family Cytokines by 4-Trifluoromethyl-celecoxib Is Coupled to Degradation via the Endoplasmic Reticulum Stress Protein HERP'. Together they form a unique fingerprint.

Cite this