Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite

Raymond G. P. McQuaid, Michael P. Campbell, Roger W. Whatmore, Amit Kumar, J. Marty Gregg

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)
337 Downloads (Pure)


Ferroelectric domain walls constitute a completely new class of sheet-like functional material. Moreover, since domain walls are generally writable, erasable, and mobile, they could be useful in functionally agile devices: for example, creating and moving conducting walls could make or break electrical connections in new forms of reconfigurable nanocircuitry. However, significant challenges exist: site-specific injection and annihilation of planar walls, which show robust conductivity, has not been easy to achieve. Here, we report the observation, mechanical writing and controlled movement of charged conducting domain walls in the improper ferroelectric Cu3B7O13Cl. Walls are straight, tens of microns long, and exist as a consequence of elastic compatibility conditions between specific domain pairs. We show that site-specific injection of conducting walls of up to hundreds of microns in length can be achieved through locally applied point-stress and, once created, that they can be moved and repositioned using applied electric fields.
Original languageEnglish
Article number15105
Number of pages7
JournalNature Communications
Publication statusPublished - 16 May 2017


Dive into the research topics of 'Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite'. Together they form a unique fingerprint.

Cite this