Interspecific variation, habitat complexity and ovipositional responses modulate the efficacy of cyclopoid copepods in disease vector control

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
177 Downloads (Pure)

Abstract

The use of predatory biological control agents can form an effective component in the management of vectors of parasitic diseases and arboviruses. However, we require predictive methods to assess the efficacies of potential biocontrol agents under relevant environmental contexts. Here, we applied functional responses (FRs) and reproductive effort as a proxy of numerical responses (NRs) to compare the Relative Control Potential (RCP) of three cyclopoid copepods, Macrocyclops albidus, M. fuscus and Megacyclops viridis towards larvae of the mosquito Culex quinquefasciatus. The effects of habitat complexity on such predatory impacts were examined, as well as ovipositional responses of C. quinquefasciatus to copepod cues in pairwise choice tests. All three copepod species demonstrated a population destabilising Type II FR. M. albidus demonstrated the shortest handling time and highest maximum feeding rate, whilst M. fuscus exhibited the highest attack rate. The integration of reproductive effort estimations in the new RCP metric identifies M. albidus as a very promising biocontrol agent. Habitat complexity did not impact the FR form or maximum feeding rate of M. albidus, indicating that potentially population destabilising effects are robust to habitat variations; however, attack rates of M. albidus were reduced in the presence of such complexity. C. quinquefasciatus avoided ovipositing where M. albidus was physically present, however it did not avoid chemical cues alone. C. quinquefasciatus continued to avoid M. albidus during oviposition when both the treatment and control water were dyed; however, when an undyed, predator-free control was paired with dyed, predator-treated water, positive selectivity towards the treatment water was stimulated. We thus demonstrate the marked predatory potential of cyclopoid copepods, utilising our new RCP metric, and advocate their feasibility in biological control programmes targeting container-style habitats. We also show that behavioural responses of target organisms and environmental context should be considered to maximise agent efficacy.
Original languageEnglish
Pages (from-to)80-87
JournalBiological Control
Volume121
Early online date13 Feb 2018
DOIs
Publication statusPublished - Jun 2018

Fingerprint

Dive into the research topics of 'Interspecific variation, habitat complexity and ovipositional responses modulate the efficacy of cyclopoid copepods in disease vector control'. Together they form a unique fingerprint.

Cite this