Invertibility preserving mappings onto finite C*-algebras

Martin Mathieu, Francois Schulz

Research output: Contribution to journalArticlepeer-review

2 Downloads (Pure)

Abstract

We prove that every surjective unital linear mapping which preserves invertible elements from a Banach algebra onto a C*-algebra carrying a faithful tracial state is a Jordan homomorphism thus generalising Aupetit's 1998 result for finite von Neumann algebras.
Original languageEnglish
Number of pages7
JournalStudia Mathematica
Early online date26 May 2023
DOIs
Publication statusEarly online date - 26 May 2023

Bibliographical note

7 pages

Keywords

  • math.OA
  • math.FA
  • 47B48, 47A10, 46L05, 46L30, 16W10, 17C65

Fingerprint

Dive into the research topics of 'Invertibility preserving mappings onto finite C*-algebras'. Together they form a unique fingerprint.

Cite this