TY - JOUR
T1 - Investigation of forced convection through entrance region of a porous-filled microchannel: An analytical study based on the scale analysis
AU - Dehghan, Maziar
AU - Valipour, Mohammad Sadegh
AU - Saedodin, Seyfolah
AU - Mahmoudi, Yasser
PY - 2016/4/25
Y1 - 2016/4/25
N2 - The thermally developing forced convection heat transfer in a micro-channel filled with a porous material in the slip-flow regime is analyzed. Channel walls are subjected to a constant heat flux. The local thermal non-equilibrium (LTNE) condition is considered and both the fluid and solid phases in the porous region are assumed to have internal heat generation. According to a perturbation analysis assuming small temperature difference between the two phases obtained by the scale analysis, we show that there is no need to apply a thermal boundary condition model at the channel wall. Thus, we obtained an analytical solution for the thermally developing Nusselt number (Nu) using no model. Thermal boundary condition models (A and B) are also used to find the temperature jump at the wall. Comparing Nu of models A and B with the pure perturbation analysis (using no model) and with the solution under local thermal equilibrium (LTE) condition reveals that model B cannot predict the LTE condition when a temperature jump exists on the wall. Hence, model A may be the only valid scenario in the slip-flow regime. In addition, expressions for the thermal entry length (xdeveloping) are proposed. An increase in β as well as a decrease in the thermal conductivity ratio (k) decrease xdeveloping.
AB - The thermally developing forced convection heat transfer in a micro-channel filled with a porous material in the slip-flow regime is analyzed. Channel walls are subjected to a constant heat flux. The local thermal non-equilibrium (LTNE) condition is considered and both the fluid and solid phases in the porous region are assumed to have internal heat generation. According to a perturbation analysis assuming small temperature difference between the two phases obtained by the scale analysis, we show that there is no need to apply a thermal boundary condition model at the channel wall. Thus, we obtained an analytical solution for the thermally developing Nusselt number (Nu) using no model. Thermal boundary condition models (A and B) are also used to find the temperature jump at the wall. Comparing Nu of models A and B with the pure perturbation analysis (using no model) and with the solution under local thermal equilibrium (LTE) condition reveals that model B cannot predict the LTE condition when a temperature jump exists on the wall. Hence, model A may be the only valid scenario in the slip-flow regime. In addition, expressions for the thermal entry length (xdeveloping) are proposed. An increase in β as well as a decrease in the thermal conductivity ratio (k) decrease xdeveloping.
U2 - 10.1016/j.applthermaleng.2015.12.086
DO - 10.1016/j.applthermaleng.2015.12.086
M3 - Article
VL - 99
SP - 446
EP - 454
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
SN - 1359-4311
ER -