Abstract
Glycerol acetins (mono-, di-, and tri) are produced via esterification with acetic acid. The acetins are commercially important industrial chemicals including their application as fuel additives, thus significant to environmental sustainability and economic viability of the biorefinery industry. Glycerol esterification with acetic acid was studied using partial tin exchanged tungstophosphoric acid supported on montmorillonite K-10 as catalysts. Partially exchanging the H+ ion of DTP with Sn (x = 1) increased the acidity of the catalyst and showed an increase in the catalytic activity as compared to the DTP/K-10 catalyst. A series of tin exchanged tungstophosphoric acid (20% w/w) supported on montmorillonite K-10 clay (Snx-DTP/K-10, where x = 0.5–1.5) were synthesized and thoroughly characterized by using BET, XRD, FT-IR, UV–vis, and titration techniques. Among various catalysts, Sn1-DTP/K-10 was found to be the most active catalyst for glycerol esterification. Effects of different reaction parameters were studied and optimized to get high yields of glycerol triacetin. A suitable kinetic model of the reaction was fitted, and the Langmuir–Hinshelwood (L-H) dual-site model was able to describe the experimental data with high agreement between the experimental and calculated results. The prepared catalyst could be recycled at least four times without significant loss of activity. The overall process is green and environment friendly.
Original language | English |
---|---|
Pages (from-to) | 19095-19103 |
Number of pages | 9 |
Journal | Industrial & Engineering Chemistry Research |
Volume | 62 |
Issue number | 45 |
Early online date | 26 Oct 2022 |
DOIs | |
Publication status | Published - 15 Nov 2023 |
Keywords
- Industrial and Manufacturing Engineering
- General Chemical Engineering
- General Chemistry