Laboratory unraveling of matter accretion in young stars

G. Revet, S. N. Chen, Rosaria Bonito, Benjamin Khiar, E. Filippov, costanza argiroffi, D.P. Higginson, salvatore orlando, J. Beard, marius Blecher, Marco Borghesi, Kealan Naughton, Shenchang Chen, Konstantin Burdonov, D. Khaghani, H. Pépin, O. Portugall, R. Riquier, Rafael Rodriguez, Sergey RyazantsevI. Yu. Skobelev, A. Soloviev, Oswald Willi, S. A. Pikuz, A. Ciardi, J. Fuchs

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)
261 Downloads (Pure)


Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first windowon this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the
incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion
rates derived from x-ray and optical observations, respectively.
Original languageEnglish
Article numbere1700982
Pages (from-to)1-10
JournalScience Advances
Issue number11
Publication statusPublished - 01 Nov 2017

Fingerprint Dive into the research topics of 'Laboratory unraveling of matter accretion in young stars'. Together they form a unique fingerprint.

Cite this