Level Crossing Rate and Average Fade Duration in F Composite Fading Channels

Seong Ki Yoo, Simon L. Cotton, Paschalis C. Sofotasios, Sami Muhaidat, George K. Karagiannidis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

In this letter, we derive exact closed-form expressions for the level crossing rate (LCR) and average fade duration (AFD) of the signal envelope in F composite fading channels. Using the novel expressions, we then investigate the behavior of the LCR and AFD for different multipath fading and shadowing conditions. It is shown that multipath fading has a more significant effect on the LCR at lower fade levels while shadowing tends to have a discernible impact on higher threshold levels. In contrast, shadowing has a more noticeable effect on the AFD compared to multipath fading at both lower and higher levels. Approximate expressions for the LCR and AFD are also provided, and shown to be in good agreement with the exact LCR and AFD as they approach lower and higher threshold levels. The offered results are expected to be useful in the design of emerging systems such as device-to-device communications.

Original languageEnglish
Article number8894478
Pages (from-to)281-284
Number of pages4
JournalIEEE Wireless Communications Letters
Volume9
Issue number3
Early online date08 Nov 2019
DOIs
Publication statusPublished - Mar 2020

Bibliographical note

Funding Information:
Manuscript received February 23, 2019; revised May 28, 2019; accepted August 3, 2019. Date of publication November 8, 2019; date of current version March 9, 2020. This work was supported in part by the U.K. Engineering and Physical Sciences Research Council under Grant EP/L026074/1, in part by the Department for the Economy Northern Ireland under Grant USI080, and in part by the Khalifa University under Grant KU/RC1-C2PS-T2/8474000137 and Grant KU/FSU-8474000122. The associate editor coordinating the review of this article and approving it for publication was Y. Huang. (Corresponding author: George K. Karagiannidis.) S. K. Yoo is with the School of Computing, Electronics and Mathematics, Coventry University, Coventry CV1 5FB, U.K. (e-mail: ad3869@coventry.ac.uk).

Publisher Copyright:
© 2019 IEEE.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Keywords

  • Average fade duration
  • composite fading
  • Fisher-Snedecor F distribution and level crossing rate

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Level Crossing Rate and Average Fade Duration in F Composite Fading Channels'. Together they form a unique fingerprint.

Cite this