Low-dose studies of bystander cell killing with targeted soft X rays

Giuseppe Schettino, K. Folkard, Kevin Prise, B. Vojnovic, K.D. Held, B.D. Michael

Research output: Contribution to journalArticle

111 Citations (Scopus)

Abstract

The Gray Cancer Institute ultrasoft X-ray microprobe was used to quantify the bystander response of individual V79 cells exposed to a focused carbon K-shell (278 eV) X-ray beam. The ultrasoft X-ray microprobe is designed to precisely assess the biological response of individual cells irradiated in vitro with a very fine beam of low-energy photons. Characteristic C-K X rays are generated by a focused beam of 10 keV electrons striking a graphite target. Circular diffraction gratings (i.e. zone plates) are then employed to focus the X-ray beam into a spot with a radius of 0.25 mum at the sample position. Using this microbeam technology, the correlation between the irradiated cells and their nonirradiated neighbors can be examined critically. The survival response of V79 cells irradiated with a C-K X-ray beam was measured in the 0-2-Gy dose range. The response when all cells were irradiated was compared to that obtained when only a single cell was exposed. The cell survival data exhibit a linear-quadratic response when all cells were targeted (with evidence for hyper-sensitivity at low doses). When only a single cell was targeted within the population, 10% cell killing was measured. In contrast to the binary bystander behavior reported by many other investigations, the effect detected was initially dependent on dose (200 mGy). In the low-dose region (
Original languageEnglish
Pages (from-to)505-511
Number of pages7
JournalRadiation Research
Volume160
Issue number5
DOIs
Publication statusPublished - Nov 2003

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Radiology Nuclear Medicine and imaging
  • Biophysics
  • Radiation

Fingerprint Dive into the research topics of 'Low-dose studies of bystander cell killing with targeted soft X rays'. Together they form a unique fingerprint.

Cite this