Low-Temperature Tailoring of Copper-Deficient Cu3−xP – Electric Properties, Phase Transitions and Performance in Lithium-Ion Batteries

Alexander Wolff, Thomas Doert, Jens Hunger, Martin Kaiser, Julia Pallmann, Romy Reinhold, Sivatmeehan Yogendra, Lars Giebeler, Jörg Sichelschmidt, Walter Schnelle, Rachel Whiteside, H. Q . Nimal Gunaratne, Peter Nockemann, Jan J. Weigand, Eike Brunner, Michael Ruck*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)
685 Downloads (Pure)

Abstract

A convenient approach for a controlled and high-yield synthesis of copper-deficient Cu3−xP (0.1 < x < 0.7) is reported that makes use of ionic liquids with highly nucleophilic “naked” halide anions. Halide anions drastically enhance the reactivity of the white phosphorus precursor and kinetically disfavour the formation of phosphorus-rich side products. Cu3−xP shows a high degree of tolerance for cation vacancies without mayor structural reorganisation, as evidenced by X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy. Measurements of the electric 29 properties reveal that Cu3−xP is a bad metallic p-type conductor. The resistivity is composition-dependent and displays a distinct anomaly from a phase transition, leading to the discovery and structural characterisation of two hitherto unknown low temperature polymorphs. Electrochemical evaluation of copper-deficient Cu3−xP as anode material for lithium ion batteries reveals a drastic change in the cycling mechanism leading to an increase of the initial capacities by about 70 %. This work gives a comprehensive insight into the chemical and structural features of copper-deficient Cu3−xP and should lead to an improved understanding of its properties, not only for battery applications.
Original languageEnglish
Number of pages13
JournalChemistry of Materials
Early online date17 Sept 2018
DOIs
Publication statusEarly online date - 17 Sept 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Low-Temperature Tailoring of Copper-Deficient Cu3−xP – Electric Properties, Phase Transitions and Performance in Lithium-Ion Batteries'. Together they form a unique fingerprint.

Cite this