Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration

Karis Little, Maria Llorián-Salvador, Miao Tang, Xuan Du, Stephen Marry, Mei Chen, Heping Xu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Downloads (Pure)

Abstract

Background: Macular fibrosis causes irreparable vision loss in neovascular age-related macular degeneration (nAMD) even with anti-vascular endothelial growth factor (VEGF) therapy. Inflammation is known to play an important role in macular fibrosis although the underlying mechanism remains poorly defined. The aim of this study was to understand how infiltrating macrophages and complement proteins may contribute to macular fibrosis. Methods: Subretinal fibrosis was induced in C57BL/6J mice using the two-stage laser protocol developed by our group. The eyes were collected at 10, 20, 30 and 40 days after the second laser and processed for immunohistochemistry for infiltrating macrophages (F4/80 and Iba-1), complement components (C3a and C3aR) and fibrovascular lesions (collagen-1, Isolectin B4 and α-SMA). Human retinal sections with macular fibrosis were also used in the study. Bone marrow-derived macrophages (BMDMs) from C57BL/6J mice were treated with recombinant C3a, C5a or TGF-β for 48 and 96 h. qPCR, Western blot and immunohistochemistry were used to examine the expression of myofibroblast markers. The involvement of C3a-C3aR pathway in macrophage to myofibroblast transition (MMT) and subretinal fibrosis was further investigated using a C3aR antagonist (C3aRA) and a C3a blocking antibody in vitro and in vivo. Results: Approximately 20~30% of F4/80+ (or Iba-1+) infiltrating macrophages co-expressed α-SMA in subretinal fibrotic lesions both in human nAMD eyes and in the mouse model. TGF-β and C3a, but not C5a treatment, significantly upregulated expression of α-SMA, fibronectin and collagen-1 in BMDMs. C3a-induced upregulation of α-SMA, fibronectin and collagen-1 in BMDMs was prevented by C3aRA treatment. In the two-stage laser model of induced subretinal fibrosis, treatment with C3a blocking antibody but not C3aRA significantly reduced vascular leakage and Isolectin B4+ lesions. The treatment did not significantly alter collagen-1+ fibrotic lesions. Conclusions: MMT plays a role in macular fibrosis secondary to nAMD. MMT can be induced by TGF-β and C3a but not C5a. Further research is required to fully understand the role of MMT in macular fibrosis. Graphical abstract: Macrophage to myofibroblast transition (MMT) contributes to subretinal fibrosis. Subretinal fibrosis lesions contain various cell types, including macrophages and myofibroblasts, and are fibrovascular. Myofibroblasts are key cells driving pathogenic fibrosis, and they do so by producing excessive amount of extracellular matrix proteins. We have found that infiltrating macrophages can transdifferentiate into myofibroblasts, a phenomenon termed macrophage to myofibroblast transition (MMT) in macular fibrosis. In addition to TGF-β1, C3a generated during complement activation in CNV can also induce MMT contributing to macular fibrosis. RPE = retinal pigment epithelium. BM = Bruch’s membrane. MMT = macrophage to myofibroblast transition. TGFB = transforming growth factor β. a-SMA = alpha smooth muscle actin. C3a = complement C3a.[Figure not available: see fulltext.]

Original languageEnglish
Article number355
Number of pages12
JournalJournal of neuroinflammation
Volume17
Issue number1
Early online date25 Nov 2020
DOIs
Publication statusEarly online date - 25 Nov 2020

Bibliographical note

Funding Information:
This study was supported by a grant from (1) Fight for Sight (5057/5058); (2) the Department for the Economy (DfE) of Northern Ireland, UK; and (3) the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 722717.

Publisher Copyright:
© 2020, The Author(s).

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Keywords

  • Age-related macular degeneration
  • Complement
  • Inflammation
  • Macrophage to myofibroblast transition
  • Retinal fibrosis

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology
  • Neurology
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration'. Together they form a unique fingerprint.

Cite this