Manufacturing of 3D-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations

Giulia Ballacchino , Edward Weaver, Essyrose Mathew, Rossella Dorati, Ida Genta, Bice Conti, Dimitrios A. Lamprou*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Downloads (Pure)

Abstract

Microfluidic technique has emerged as a promising tool for the production of stable and monodispersed nanoparticles (NPs). In particular, this work focuses on liposome production by microfluidics and on factors involved in determining liposome characteristics. Traditional fabrication techniques for microfluidic devices suffer from several disadvantages, such as multistep processing and expensive facilities. Three-dimensional printing (3DP) has been revolutionary for microfluidic device production, boasting facile and low-cost fabrication. In this study, microfluidic devices with innovative micromixing patterns were developed using fused deposition modelling (FDM) and liquid crystal display (LCD) printers. To date, this work is the first to study liposome production using LCD-printed microfluidic devices. The current study deals with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes with cholesterol (2:1) prepared using commercial and 3D-printed microfluidic devices. We evaluated the effect of microfluidic parameters, chip manufacturing, material, and channel design on liposomal formulation by analysing the size, PDI, and ζ-potential. Curcumin exhibits potent anticancer activity and it has been reported that curcumin-loaded liposomes formulated by microfluidics show enhanced encapsulation efficiency when compared with other reported systems. In this work, curcumal liposomes were produced using the developed microfluidic devices and particle sizing, ζ-potential, encapsulation efficiency, and in vitro release studies were performed at 37 °C.
Original languageEnglish
Article number8064
JournalInternational Journal of Molecular Sciences
Volume22
Issue number15
DOIs
Publication statusPublished - 28 Jul 2021

Keywords

  • Microfluidics
  • Chip Manufacturing
  • 3D Printing
  • Nanoparticles
  • Liposomes
  • Curcumin
  • Drug Delivery
  • Personalised Medicine

Fingerprint

Dive into the research topics of 'Manufacturing of 3D-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations'. Together they form a unique fingerprint.

Cite this