Maximising capture efficiency and specificity of magnetic separation for Mycobacterium avium subsp. paratuberculosis cells

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.
Original languageEnglish
Pages (from-to)7550-7558
Number of pages9
JournalApplied and Environmental Microbiology
Volume76
Issue number22
Early online date17 Sep 2010
DOIs
Publication statusPublished - Nov 2010

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Food Science
  • Biotechnology
  • Ecology

Fingerprint Dive into the research topics of 'Maximising capture efficiency and specificity of magnetic separation for Mycobacterium avium subsp. paratuberculosis cells'. Together they form a unique fingerprint.

  • Cite this