microRNA-mediated translation repression through GYF-1 and IFE-4 in C. elegans development

Vinay K Mayya, Mathieu N Flamand, Alice M Lambert, Seyed Mehdi Jafarnejad, James A Wohlschlegel, Nahum Sonenberg, Thomas F Duchaine

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
128 Downloads (Pure)


microRNA (miRNA)-mediated gene silencing is enacted through the recruitment of effector proteins that direct translational repression or degradation of mRNA targets, but the relative importance of their activities for animal development remains unknown. Our concerted proteomic surveys identified the uncharacterized GYF-domain encoding protein GYF-1 and its direct interaction with IFE-4, the ortholog of the mammalian translation repressor 4EHP, as key miRNA effector proteins in Caenorhabditis elegans. Recruitment of GYF-1 protein to mRNA reporters in vitro or in vivo leads to potent translation repression without affecting the poly(A) tail or impinging on mRNA stability. Loss of gyf-1 is synthetic lethal with hypomorphic alleles of embryonic miR-35-42 and larval (L4) let-7 miRNAs, which is phenocopied through engineered mutations in gyf-1 that abolish interaction with IFE-4. GYF-1/4EHP function is cascade-specific, as loss of gyf-1 had no noticeable impact on the functions of other miRNAs, including lin-4 and lsy-6. Overall, our findings reveal the first direct effector of miRNA-mediated translational repression in C. elegans and its physiological importance for the function of several, but likely not all miRNAs.

Original languageEnglish
JournalNucleic Acids Research
Early online date24 Mar 2021
Publication statusEarly online date - 24 Mar 2021


Dive into the research topics of 'microRNA-mediated translation repression through GYF-1 and IFE-4 in C. elegans development'. Together they form a unique fingerprint.

Cite this