Models of open populations with space-limited recruitment: extension of theory and application to the barnacle Chthamalus montagui.

Mark Johnson, K. Hyder, P. Aberg, S.J. Hawkins

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

1. Barnacles are a good model organism for the study of open populations with space-limited recruitment. These models are applicable to other species with open supply of new individuals and resource limitation. The inclusion of space in models leads to reductions in recruitment with increasing density, and thus predictions of population size and stability are possible. 2. Despite the potential generality of a demographic theory for open space-limited populations, the models currently have a narrow empirical base. In this study, a model for an open population with space-limited recruitment was extended to include size-specific survival and promotions to any size class. The assumptions of this model were tested using data from a pan-European study of the barnacle Chthamalus montagui Southward. Two models were constructed: a 6-month model and a periodic annual model. Predicted equilibria and their stabilities were compared between shores. 3. Tests of model assumptions supported the extension of the theory to include promotions to any size class. Mortality was found to be size-specific and density independent. Studied populations were open, with recruitment proportional to free space. 4. The 6-month model showed a significant interaction between time and location for equilibrium free space. This may have been due to contrasts in the timing of structuring processes (i.e. creating and filling space) between Mediterranean and Atlantic systems. Integration of the 6-month models into a periodic annual model removed the differences in equilibrium-free space between locations. 5. Model predictions show a remarkable similarity between shores at a European scale. Populations were persistent and all solutions were stable. This reflects the apparent absence of density-dependent mortality and a high adult survivorship in C. montagui. As populations are intrinsically stable, observations of fluctuations in density are directly attributable to variations in the environmental forcing of recruitment or mortality
Original languageEnglish
Pages (from-to)853-863
Number of pages11
JournalJournal of Animal Ecology
Volume70(5)
Issue number5
DOIs
Publication statusPublished - Sep 2001

Fingerprint

Cirripedia
mortality
prediction
open space
survivorship
population size
demographic statistics
survival rate

Cite this

@article{a214930625cf43f79b99608321f45881,
title = "Models of open populations with space-limited recruitment: extension of theory and application to the barnacle Chthamalus montagui.",
abstract = "1. Barnacles are a good model organism for the study of open populations with space-limited recruitment. These models are applicable to other species with open supply of new individuals and resource limitation. The inclusion of space in models leads to reductions in recruitment with increasing density, and thus predictions of population size and stability are possible. 2. Despite the potential generality of a demographic theory for open space-limited populations, the models currently have a narrow empirical base. In this study, a model for an open population with space-limited recruitment was extended to include size-specific survival and promotions to any size class. The assumptions of this model were tested using data from a pan-European study of the barnacle Chthamalus montagui Southward. Two models were constructed: a 6-month model and a periodic annual model. Predicted equilibria and their stabilities were compared between shores. 3. Tests of model assumptions supported the extension of the theory to include promotions to any size class. Mortality was found to be size-specific and density independent. Studied populations were open, with recruitment proportional to free space. 4. The 6-month model showed a significant interaction between time and location for equilibrium free space. This may have been due to contrasts in the timing of structuring processes (i.e. creating and filling space) between Mediterranean and Atlantic systems. Integration of the 6-month models into a periodic annual model removed the differences in equilibrium-free space between locations. 5. Model predictions show a remarkable similarity between shores at a European scale. Populations were persistent and all solutions were stable. This reflects the apparent absence of density-dependent mortality and a high adult survivorship in C. montagui. As populations are intrinsically stable, observations of fluctuations in density are directly attributable to variations in the environmental forcing of recruitment or mortality",
author = "Mark Johnson and K. Hyder and P. Aberg and S.J. Hawkins",
year = "2001",
month = "9",
doi = "10.1046/j.0021-8790.2001.00547.x",
language = "English",
volume = "70(5)",
pages = "853--863",
journal = "Journal of Animal Ecology",
issn = "0021-8790",
publisher = "Wiley-Blackwell",
number = "5",

}

Models of open populations with space-limited recruitment: extension of theory and application to the barnacle Chthamalus montagui. / Johnson, Mark; Hyder, K.; Aberg, P.; Hawkins, S.J.

In: Journal of Animal Ecology, Vol. 70(5), No. 5, 09.2001, p. 853-863.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Models of open populations with space-limited recruitment: extension of theory and application to the barnacle Chthamalus montagui.

AU - Johnson, Mark

AU - Hyder, K.

AU - Aberg, P.

AU - Hawkins, S.J.

PY - 2001/9

Y1 - 2001/9

N2 - 1. Barnacles are a good model organism for the study of open populations with space-limited recruitment. These models are applicable to other species with open supply of new individuals and resource limitation. The inclusion of space in models leads to reductions in recruitment with increasing density, and thus predictions of population size and stability are possible. 2. Despite the potential generality of a demographic theory for open space-limited populations, the models currently have a narrow empirical base. In this study, a model for an open population with space-limited recruitment was extended to include size-specific survival and promotions to any size class. The assumptions of this model were tested using data from a pan-European study of the barnacle Chthamalus montagui Southward. Two models were constructed: a 6-month model and a periodic annual model. Predicted equilibria and their stabilities were compared between shores. 3. Tests of model assumptions supported the extension of the theory to include promotions to any size class. Mortality was found to be size-specific and density independent. Studied populations were open, with recruitment proportional to free space. 4. The 6-month model showed a significant interaction between time and location for equilibrium free space. This may have been due to contrasts in the timing of structuring processes (i.e. creating and filling space) between Mediterranean and Atlantic systems. Integration of the 6-month models into a periodic annual model removed the differences in equilibrium-free space between locations. 5. Model predictions show a remarkable similarity between shores at a European scale. Populations were persistent and all solutions were stable. This reflects the apparent absence of density-dependent mortality and a high adult survivorship in C. montagui. As populations are intrinsically stable, observations of fluctuations in density are directly attributable to variations in the environmental forcing of recruitment or mortality

AB - 1. Barnacles are a good model organism for the study of open populations with space-limited recruitment. These models are applicable to other species with open supply of new individuals and resource limitation. The inclusion of space in models leads to reductions in recruitment with increasing density, and thus predictions of population size and stability are possible. 2. Despite the potential generality of a demographic theory for open space-limited populations, the models currently have a narrow empirical base. In this study, a model for an open population with space-limited recruitment was extended to include size-specific survival and promotions to any size class. The assumptions of this model were tested using data from a pan-European study of the barnacle Chthamalus montagui Southward. Two models were constructed: a 6-month model and a periodic annual model. Predicted equilibria and their stabilities were compared between shores. 3. Tests of model assumptions supported the extension of the theory to include promotions to any size class. Mortality was found to be size-specific and density independent. Studied populations were open, with recruitment proportional to free space. 4. The 6-month model showed a significant interaction between time and location for equilibrium free space. This may have been due to contrasts in the timing of structuring processes (i.e. creating and filling space) between Mediterranean and Atlantic systems. Integration of the 6-month models into a periodic annual model removed the differences in equilibrium-free space between locations. 5. Model predictions show a remarkable similarity between shores at a European scale. Populations were persistent and all solutions were stable. This reflects the apparent absence of density-dependent mortality and a high adult survivorship in C. montagui. As populations are intrinsically stable, observations of fluctuations in density are directly attributable to variations in the environmental forcing of recruitment or mortality

UR - http://www.scopus.com/inward/record.url?scp=0034808694&partnerID=8YFLogxK

U2 - 10.1046/j.0021-8790.2001.00547.x

DO - 10.1046/j.0021-8790.2001.00547.x

M3 - Article

VL - 70(5)

SP - 853

EP - 863

JO - Journal of Animal Ecology

JF - Journal of Animal Ecology

SN - 0021-8790

IS - 5

ER -