Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity

Orla M. Finucane, Claire L. Lyons, Aoife M. Murphy, Clare M. Reynolds, Rut Klinger, Niamh P. Healy, Aoife A. Cooke, Rebecca C. Coll, Liam Mcallan, Kanishka N. Nilaweera, Marcella E. O'Reilly, Audrey C. Tierney, Melissa J. Morine, Juan F. Alcala-Diaz, Jose Lopez-Miranda, Darran P. O'Connor, Luke A. O'Neill, Fiona C. Mcgillicuddy, Helen M. Roche*

*Corresponding author for this work

Research output: Contribution to journalArticle

129 Citations (Scopus)

Abstract

Saturated fatty acid (SFA) high-fat diets (HFDs) enhance interleukin (IL)-1β-mediated adipose inflammation and insulin resistance. However, the mechanisms by which different fatty acids regulate IL-1β and the subsequent effects on adipose tissue biology and insulin sensitivity in vivo remain elusive. We hypothesized that the replacement of SFA for monounsaturated fatty acid (MUFA) in HFDs would reduce pro-IL-1β priming in adipose tissue and attenuate insulin resistance via MUFAdriven AMPK activation. MUFA-HFD-fed mice displayed improved insulin sensitivity coincident with reduced pro- IL-1β priming, attenuated adipose IL-1β secretion, and sustained adipose AMPK activation compared with SFA-HFD-fed mice. Furthermore, MUFA-HFD-fed mice displayed hyperplastic adipose tissue, with enhanced adipogenic potential of the stromal vascular fraction and improved insulin sensitivity. In vitro, we demonstrated that the MUFA oleic acid can impede ATPinduced IL-1β secretion from lipopolysaccharide- And SFA-primed cells in an AMPK-dependent manner. Conversely, in a regression study, switching from SFA- To MUFA-HFD failed to reverse insulin resistance but improved fasting plasma insulin levels. In humans, high-SFA consumers, but not high-MUFA consumers, displayed reduced insulin sensitivity with elevated pycard-1 and caspase-1 expression in adipose tissue. These novel findings suggest that dietary MUFA can attenuate IL-1β-mediated insulin resistance and adipose dysfunction despite obesity via the preservation of AMPK activity.

Original languageEnglish
Pages (from-to)2116-2128
JournalDiabetes
Volume64
Issue number6
DOIs
Publication statusPublished - 01 Jun 2015

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint Dive into the research topics of 'Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity'. Together they form a unique fingerprint.

Cite this