Abstract
The performance of linear multi-user multiple-input
multiple-output (MU-MIMO) systems has been extensively studied for classical statistical channel models. In contrast, there is little analysis for ray-based models, which are physically motivated,
feature prominently in standards and have been experimentally
validated. Thus, we present a novel analysis framework for zero
forcing (ZF) and maximal ratio combining (MRC) applicable to
such models. Specifically, using a central result for averaging in
the angular domain, we derive accurate expressions for ZF signalto-noise ratio and MRC signal, interference and noise powers.
The remarkably simple expressions offer the following insights
into the effects of the propagation environment. While ZF is
robust to parameters such as cluster and subray angle spreads,
MRC interference is highly sensitive to them. We show that
the performance scales linearly with the number of antennas,
and that it degrades with narrow angle spreads and as the
propagation moves toward the antenna end-fire. Finally, by
evaluating the variance of the MRC interference, we observe
that an approximation to the MRC SINR widely used for classical
statistical models, is inaccurate in ray-based channels.
Original language | English |
---|---|
Title of host publication | 2019 IEEE International Conference in Communications: Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
DOIs | |
Publication status | Early online date - 15 Jul 2019 |