Multiplexing with three-primer PCR for rapid and economical microsatellite validation.

Salla Vartia, Patrick C. Collins, Thomas F. Cross, Richard D. Fitzgerald, David T. Gauthier, Philip McGinnity, Luca Mirimin, Jens Carlsson

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
107 Downloads (Pure)

Abstract

The next generation sequencing revolution has enabled rapid discovery of genetic markers, however, development of fully functioning new markers still requires a long and costly process of marker validation. This study reports a rapid and economical approach for the validation and deployment of polymorphic microsatellite markers obtained from a 454 pyrosequencing library of Atlantic cod, Gadus morhua, Linnaeus 1758. Primers were designed from raw reads to amplify specific amplicon size ranges, allowing effective PCR multiplexing. Multiplexing was combined with a three-primer PCR approach using four universal tails to label amplicons with separate fluorochromes. A total of 192 primer pairs were tested, resulting in 73 polymorphic markers. Of these, 55 loci were combined in six multiplex panels each containing between six and eleven markers. Variability of the loci was assessed on G. morhua from the Celtic Sea (n 46) and the Scotian Shelf (n 46), two locations that have shown genetic differentiation in previous studies. Multilocus FST between the two samples was estimated at 0.067 (P 0.001). After three loci potentially under selection were excluded, the global FST was estimated at 0.043 (P 0.001). Our technique combines three- primer and multiplex PCR techniques, allowing simultaneous screening and validation of relatively large numbers of microsatellite loci.
Original languageEnglish
Pages (from-to)43-54
Number of pages12
JournalHereditas
Volume151
Issue number2-3
DOIs
Publication statusPublished - Jun 2014

Keywords

  • Next generation sequencing

Fingerprint

Dive into the research topics of 'Multiplexing with three-primer PCR for rapid and economical microsatellite validation.'. Together they form a unique fingerprint.

Cite this