Abstract
We provide a new combinatorial approach to studying the collection of N-infinity-operads in G-equivariant homotopy theory for G a finite cyclic group. In particular, we show that for G the cyclic group of order p^n the natural order on the collection of N-infinity-operads stands in bijection with the poset structure of the (n+1)-associahedron. We further provide a lower bound for the number of possible N-infinity-operads for any finite cyclic group G.
| Original language | English |
|---|---|
| Pages (from-to) | 285–304 |
| Journal | Pacific Journal of Mathematics |
| Volume | 315 |
| Issue number | 2 |
| DOIs | |
| Publication status | Published - 19 Jan 2022 |