TY - JOUR
T1 - Nanocrystal-based 3D-printed tablets: Semi-solid extrusion using Melting solidification printing process (MESO-PP) for Oral Administration of poorly soluble drugs
AU - Lopez-Vidal, Lucía
AU - Pablo Real, Juan
AU - Andrés Real, Daniel
AU - Camacho, Nahuel
AU - Kogan, Marcelo J
AU - Paredes, Alejandro J
AU - Daniel Palma, Santiago
PY - 2022/1/5
Y1 - 2022/1/5
N2 - This is the first report on the inclusion of nanocrystals (NCs) within 3D-printed oral solid dosage forms -3D-printed tablets or printlets- produced by the Melting Solidification Printing Process (MESO-PP) 3D printing technique. This method allowed the incorporation of albendazole (ABZ) nanocrystals in a concentration of up to 50% w/w, something not achieved in conventional tablets. An ink of PEG 1500/propylenegycol was used as a carrier and no physicochemical interactions or crystallinity modifications were observed due to the inclusion of ABZ-NCs into the ink, as demonstrated by TGA, DSC, XRD and FT-IR. In particular, the relative crystallinity of the ink loaded with NCs was 97.8% similar to the physical mixture of the components. Moreover, the presence of NCs was observed in the surface and matrix of the printlets by SEM. In addition, the printlet NCs demonstrated to be more effective than NCs included in hard gelatin capsules in improving drug dissolution in HCl 0.1 N. The particle size, crystallinity and chemical stability of the nanocrystals was maintained before and after 180 days of storage. Thus, these findings exhibit relevant pharmaceutical potential for developing stable, fast-release, oral, solid dosage forms of poorly soluble drugs combining 3D printing and nanocrystals. Additionally, this technique could be applied for printing objects using different types of nanocrystals embedded in low melting temperature polymers.
AB - This is the first report on the inclusion of nanocrystals (NCs) within 3D-printed oral solid dosage forms -3D-printed tablets or printlets- produced by the Melting Solidification Printing Process (MESO-PP) 3D printing technique. This method allowed the incorporation of albendazole (ABZ) nanocrystals in a concentration of up to 50% w/w, something not achieved in conventional tablets. An ink of PEG 1500/propylenegycol was used as a carrier and no physicochemical interactions or crystallinity modifications were observed due to the inclusion of ABZ-NCs into the ink, as demonstrated by TGA, DSC, XRD and FT-IR. In particular, the relative crystallinity of the ink loaded with NCs was 97.8% similar to the physical mixture of the components. Moreover, the presence of NCs was observed in the surface and matrix of the printlets by SEM. In addition, the printlet NCs demonstrated to be more effective than NCs included in hard gelatin capsules in improving drug dissolution in HCl 0.1 N. The particle size, crystallinity and chemical stability of the nanocrystals was maintained before and after 180 days of storage. Thus, these findings exhibit relevant pharmaceutical potential for developing stable, fast-release, oral, solid dosage forms of poorly soluble drugs combining 3D printing and nanocrystals. Additionally, this technique could be applied for printing objects using different types of nanocrystals embedded in low melting temperature polymers.
KW - MESO-PP 3D printing
KW - Nanocrystals
KW - Albendazole
KW - Printlets
U2 - 10.1016/j.ijpharm.2021.121311
DO - 10.1016/j.ijpharm.2021.121311
M3 - Article
C2 - 34813905
SN - 0378-5173
VL - 611
JO - International Journal of Pharmaceutics
JF - International Journal of Pharmaceutics
M1 - 121311
ER -