Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes

Amit Kumar, Thomas M. Arruda, Alexander Tselev, Ilia N. Ivanov, Jamie S. Lawton, Thomas A. Zawodzinski, Oleg Butyaev, Sergey Zayats, Stephen Jesse, Sergei V. Kalinin

Research output: Contribution to journalArticle

19 Citations (Scopus)
262 Downloads (Pure)

Abstract

Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Original languageEnglish
Article number1621
Number of pages8
JournalScientific Reports
Volume3
DOIs
Publication statusPublished - 08 Apr 2013

Fingerprint Dive into the research topics of 'Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes'. Together they form a unique fingerprint.

  • Cite this

    Kumar, A., Arruda, T. M., Tselev, A., Ivanov, I. N., Lawton, J. S., Zawodzinski, T. A., Butyaev, O., Zayats, S., Jesse, S., & Kalinin, S. V. (2013). Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes. Scientific Reports, 3, [1621]. https://doi.org/10.1038/srep01621