TY - JOUR
T1 - Next‐Generation Sequencing to Identify Lacustrine Haptophytes in the Canadian Prairies: Significance for Temperature Proxy Applications
AU - Plancq, Julien
AU - Couto, Jillian M.
AU - Ijaz, Umer Z.
AU - Leavitt, Peter R.
AU - Toney, Jaime L.
PY - 2019/7/18
Y1 - 2019/7/18
N2 - The Great Plains of North America often experience prolonged droughts that have major economic and environmental impacts. Temperature reconstructions are thus crucial to help decipher the mechanisms responsible for drought occurrences. Long‐chain alkenones (LCAs), lipids produced by three major phylogenetic groups (Groups I, II, and III) of haptophyte algae within the order Isochrysidales, are increasingly used for temperature reconstructions in lacustrine settings. However, to select the most appropriate calibration of the LCA‐based temperature proxy, it is first essential to identify the LCA‐producing haptophyte species present. Here we used next‐generation sequencing to target the 18S rRNA haptophyte gene from sediments with distinct LCA profiles to identify the LCA‐producer(s) from five Canadian prairie lakes. In total, 374 operational taxonomic units (OTUs) were identified across the studied samples, of which 234 fell within the Phylum Haptophyta. Among the most abundant OTUs, three were characterized as LCA‐producers, one falling within the Group I haptophytes and two within the Group II haptophytes. The OTU from Group I haptophytes was associated with a single, highly specific LCA profile, whereas Group II OTUs showed higher variability in LCA distributions. Our study revealed that most of the LCA‐producing OTUs thriving in the Canadian lakes are included within the genus Isochrysis, which helps guide selection of the most appropriate calibration for down‐core temperature reconstructions. Our findings also suggest that the temperature dependency is likely consistent within different taxa from Group I and Group II haptophytes, but that other environmental parameters may influence the accuracy of the calibration.
AB - The Great Plains of North America often experience prolonged droughts that have major economic and environmental impacts. Temperature reconstructions are thus crucial to help decipher the mechanisms responsible for drought occurrences. Long‐chain alkenones (LCAs), lipids produced by three major phylogenetic groups (Groups I, II, and III) of haptophyte algae within the order Isochrysidales, are increasingly used for temperature reconstructions in lacustrine settings. However, to select the most appropriate calibration of the LCA‐based temperature proxy, it is first essential to identify the LCA‐producing haptophyte species present. Here we used next‐generation sequencing to target the 18S rRNA haptophyte gene from sediments with distinct LCA profiles to identify the LCA‐producer(s) from five Canadian prairie lakes. In total, 374 operational taxonomic units (OTUs) were identified across the studied samples, of which 234 fell within the Phylum Haptophyta. Among the most abundant OTUs, three were characterized as LCA‐producers, one falling within the Group I haptophytes and two within the Group II haptophytes. The OTU from Group I haptophytes was associated with a single, highly specific LCA profile, whereas Group II OTUs showed higher variability in LCA distributions. Our study revealed that most of the LCA‐producing OTUs thriving in the Canadian lakes are included within the genus Isochrysis, which helps guide selection of the most appropriate calibration for down‐core temperature reconstructions. Our findings also suggest that the temperature dependency is likely consistent within different taxa from Group I and Group II haptophytes, but that other environmental parameters may influence the accuracy of the calibration.
UR - https://doi.org/10.1029/2018JG004954
U2 - 10.1029/2018JG004954
DO - 10.1029/2018JG004954
M3 - Article
SN - 2169-8953
JO - Journal of Geophysical Research: Biogeosciences
JF - Journal of Geophysical Research: Biogeosciences
ER -