@inproceedings{f25ba911552240a197b7bd1f5f3b3f69,
title = "NNrepair: constraint-based repair of neural network classifiers",
abstract = "We present NNREPAIR, a constraint-based technique for repairing neural network classifiers. The technique aims to fix the logic of the network at an intermediate layer or at the last layer. NNREPAIR first uses fault localization to find potentially faulty network parameters (such as the weights) and then performs repair using constraint solving to apply small modifications to the parameters to remedy the defects. We present novel strategies to enable precise yet efficient repair such as inferring correctness specifications to act as oracles for intermediate layer repair, and generation of experts for each class. We demonstrate the technique in the context of three different scenarios: (1) Improving the overall accuracy of a model, (2) Fixing security vulnerabilities caused by poisoning of training data and (3) Improving the robustness of the network against adversarial attacks. Our evaluation on MNIST and CIFAR-10 models shows that NNREPAIR can improve the accuracy by 45.56% points on poisoned data and 10.40% points on adversarial data. NNREPAIR also provides small improvement in the overall accuracy of models, without requiring new data or re-training.",
author = "Muhammad Usman and Divya Gopinath and Youcheng Sun and Yannic Noller and Pasareanu, {Corina S.}",
year = "2021",
month = jul,
day = "15",
doi = "10.1007/978-3-030-81685-8_1",
language = "English",
isbn = "9783030816841",
volume = "Part 1",
series = " Lecture Notes in Computer Science ",
publisher = "Springer",
pages = "3--25",
editor = "Silva, { Alexandra } and Leino, {K. Rustan M. }",
booktitle = "33rd International Conference on Computer-Aided Verification (CAV): proceedings",
note = "33rd International Conference, CAV 2021 ; Conference date: 20-07-2021 Through 23-07-2021",
}