Nonlinear static analysis-based thrust for solar sail

Jiafu Liu, Naigang Cui, Fan Shen, Siyuan Rong

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


An accurate thrust model is extremely important for the navigation and space mission of solar sails. The thrust is deeply affected by the deformation of the highly flexible structure. Thus, in this paper, the exact thrust models for two-point and infinite-point-connected sails are presented by calculating the static deformations for the sail support beam structure with geometrical nonlinearity based on the assumption that the deformation of the sail film coincides with the support beam. And the film is merely regarded as the structure that transfers the solar radiation pressure force to the support beam. The nonlinear finite element model of the support beam with the Von-Karman’s nonlinear strain–displacement relationships is obtained. Then the Newton iteration method is used to calculate the large deformation of the sail structure. The thrust-modification methods are proposed for the two-connected sail. The deformation of the two-point-connected sail is larger than the infinite-point-connected sail, and the thrust loss of the two-point-connected sail is larger than the infinite-point-connected sail by nonlinear static calculations. Some suggestions are given based on the calculation results and relevant analysis. The thrust model should be verified and modified by in-flight data in the future.
Original languageEnglish
Pages (from-to)149-162
JournalProceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Issue number1
Early online date17 Mar 2014
Publication statusPublished - 01 Jan 2015


Dive into the research topics of 'Nonlinear static analysis-based thrust for solar sail'. Together they form a unique fingerprint.

Cite this