Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas

Sharmin Sultana, Ioannis Kourakis, Manfred A. Hellberg

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)

Abstract

The linear and nonlinear properties of large-amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modeled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential-type analysis reveals the existence of large-amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliqueness and magnetic field is discussed.
Original languageEnglish
Article number105016
Pages (from-to)105016/1-
JournalPlasma Physics and Controlled Fusion
Volume54
Issue number105016
DOIs
Publication statusPublished - Oct 2012

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Nuclear Energy and Engineering

Fingerprint

Dive into the research topics of 'Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas'. Together they form a unique fingerprint.

Cite this