On the Condition Number Distribution of Complex Wishart Matrices

Michail Matthaiou, Matthew R. McKay, Peter J. Smith, Josef A. Nossek

Research output: Contribution to journalArticlepeer-review

93 Citations (Scopus)

Abstract

This paper investigates the distribution of the condition number of complex Wishart matrices. Two closely related measures are considered: the standard condition number (SCN) and the Demmel condition number (DCN), both of which have important applications in the context of multiple-input multipleoutput (MIMO) communication systems, as well as in various branches of mathematics. We first present a novel generic framework for the SCN distribution which accounts for both central and non-central Wishart matrices of arbitrary dimension. This result is a simple unified expression which involves only a single scalar integral, and therefore allows for fast and efficient computation. For the case of dual Wishart matrices, we derive new exact polynomial expressions for both the SCN and DCN distributions. We also formulate a new closed-form expression for the tail SCN distribution which applies for correlated central Wishart matrices of arbitrary dimension and demonstrates an interesting connection to the maximum eigenvalue moments of Wishart matrices of smaller dimension. Based on our analytical results, we gain valuable insights into the statistical behavior of the channel conditioning for various MIMO fading scenarios, such as uncorrelated/semi-correlated Rayleigh fading and Ricean fading.
Original languageEnglish
Pages (from-to)1705-1717
Number of pages13
JournalIEEE Transactions on Communications
Volume58
Issue number6
DOIs
Publication statusPublished - Jun 2010

Fingerprint

Dive into the research topics of 'On the Condition Number Distribution of Complex Wishart Matrices'. Together they form a unique fingerprint.

Cite this