On the context-dependent scaling of consumer feeding rates

Daniel Barrios-O'Neill, Ruth Kelly, Jaimie T A Dick, Anthony Ricciardi, Hugh J MacIsaac, Mark C Emmerson

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)
390 Downloads (Pure)


The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology.

Original languageEnglish
Pages (from-to)668-78
Number of pages11
JournalEcology Letters
Issue number6
Early online date20 Apr 2016
Publication statusEarly online date - 20 Apr 2016


Dive into the research topics of 'On the context-dependent scaling of consumer feeding rates'. Together they form a unique fingerprint.

Cite this