Abstract
Invasive alien species continue to arrive in new locations with no abatement in rate, and thus greater predictive powers surrounding their ecological impacts are required. In particular, we need improved means of quantifying the ecological impacts of new invasive species under different contexts. Here, we develop a suite of metrics based upon the novel Relative Impact Potential (RIP) metric, combining the functional response (consumer per capita effect), with proxies for the numerical response (consumer population response), providing quantification of invasive species ecological impact. These metrics are comparative in relation to the eco-evolutionary baseline of trophically analogous natives, as well as other invasive species and across multiple populations. Crucially, the metrics also reveal how impacts of invasive species change
under abiotic and biotic contexts. While studies focused solely on functional responses have been successful in predictive invasion ecology, RIP retains these advantages while adding vital other predictive elements, principally consumer abundance. RIP can also be combined with propagule pressure to quantify
overall invasion risk. By highlighting functional response and numerical response proxies, we outline a user-friendly method for assessing the impacts of invaders of all trophic levels and taxonomic groups. We apply the metric to impact assessment in the face of climate change by taking account of both changing
predator consumption rates and prey reproduction rates. We proceed to outline the application of RIP to assess biotic resistance against incoming invasive species, the effect of evolution on invasive species impacts, application to interspecific competition, changing spatio-temporal patterns of invasion, and how RIP can inform biological control. We propose that RIP provides scientists and practitioners with a user-friendly, customisable and, crucially, powerful technique to inform invasive species policy and management.
under abiotic and biotic contexts. While studies focused solely on functional responses have been successful in predictive invasion ecology, RIP retains these advantages while adding vital other predictive elements, principally consumer abundance. RIP can also be combined with propagule pressure to quantify
overall invasion risk. By highlighting functional response and numerical response proxies, we outline a user-friendly method for assessing the impacts of invaders of all trophic levels and taxonomic groups. We apply the metric to impact assessment in the face of climate change by taking account of both changing
predator consumption rates and prey reproduction rates. We proceed to outline the application of RIP to assess biotic resistance against incoming invasive species, the effect of evolution on invasive species impacts, application to interspecific competition, changing spatio-temporal patterns of invasion, and how RIP can inform biological control. We propose that RIP provides scientists and practitioners with a user-friendly, customisable and, crucially, powerful technique to inform invasive species policy and management.
Original language | English |
---|---|
Journal | NeoBiota |
Early online date | 03 Apr 2020 |
DOIs | |
Publication status | Early online date - 03 Apr 2020 |
Keywords
- biological control
- ecological impact
- functional response
- Invasive alien species
- numerical response
- Propagule pressure
- relative impact potential metric
- risk assessment
Fingerprint
Dive into the research topics of 'On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species'. Together they form a unique fingerprint.Student Theses
-
Invasive species: Fundamental and applied science
Author: Dickey, J., Jul 2021Supervisor: Dick, J. (Supervisor) & Reid, N. (Supervisor)
Student thesis: Doctoral Thesis › Doctor of Philosophy