Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networks

P. Noorunnisa Khanam, M A AlMaadeed, Sumaaya AlMaadeed, Suchithra Kunhoth, M Ouederni, D. Sun, A. Hamilton, Eileen Harkin-Jones, Beatriz Mayoral

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)
422 Downloads (Pure)

Abstract

The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.
Original languageEnglish
Article number5340252
Number of pages15
JournalInternational Journal of Polymer Science
Volume2016
DOIs
Publication statusPublished - 01 May 2016

Fingerprint

Dive into the research topics of 'Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networks'. Together they form a unique fingerprint.

Cite this