Optimization of Cement Grouts Containing Silica Fume and Viscosity Modifying Admixture

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    There is an increasing need to identify the effect of mix composition on the rheological properties of cementitious grouts using minislump, Marsh cone, cohesion plate, washout test, and cubes to determine the fluidity, the cohesion, and other mechanical properties of grouting applications. Mixture proportioning involves the tailoring of several parameters to achieve adequate fluidity, cohesion, washout resistance and compressive strength. This paper proposes a statistical design approach using a composite fractional factorial design which was carried out to model the influence of key parameters on the performance of cement grouts. The responses relate to performance included minislump, flow time using Marsh cone, cohesion measured by Lombardi plate meter, washout mass loss and compressive strength at 3, 7, and 28 days. The statistical models are valid for mixtures with water-to-binder ratio of 0.37–0.53, 0.4–1.8% addition of high-range water reducer (HRWR) by mass of binder, 4–12% additive of silica fume as replacement of cement by mass, and 0.02–0.8% addition of viscosity modifying admixture (VMA) by mass of binder. The models enable the identification of underlying factors and interactions that influence the modeled responses of cement grout. The comparison between the predicted and measured responses indicated good accuracy of the established models to describe the effect of the independent variables on the fluidity, cohesion, washout resistance and the compressive strength. This paper demonstrates the usefulness of the models to better understand trade-offs between parameters. The multiparametric optimization is used to establish isoresponses for a desirability function for cement grout. An increase of HRWR led to an increase of fluidity and washout, a reduction in plate cohesion value, and a reduction in the Marsh cone time. An increase of VMA demonstrated a reduction of fluidity and the washout mass loss, and an increase of Marsh cone time and plate cohesion. Results indicate that the use of silica fume increased the cohesion plate and Marsh cone, and reduced the minislump. Additionally, the silica fume improved the compressive strength and the washout resistance.

    Original languageEnglish
    Article number010004QMT
    Pages (from-to)332-342
    Number of pages11
    JournalJournal of Materials in Civil Engineering
    Volume22
    Issue number4
    Early online date15 Mar 2010
    DOIs
    Publication statusPublished - Apr 2010

    Keywords

    • Compressive strength
    • Minislump
    • Cohesion plate
    • Silica fume
    • High-range water reducer
    • Viscosity modifying admixture
    • Water/binder

    ASJC Scopus subject areas

    • Civil and Structural Engineering
    • Mechanics of Materials
    • Building and Construction
    • Materials Science(all)

    Fingerprint Dive into the research topics of 'Optimization of Cement Grouts Containing Silica Fume and Viscosity Modifying Admixture'. Together they form a unique fingerprint.

    Cite this