Abstract
Evidence implicating p38γ and p38δ (p38γ/p38δ) in inflammation are mainly based on experiments using Mapk12/Mapk13 deficient (p38γ/δKO) mice, which show low levels of TPL2, the kinase upstream of MKK1-ERK1/2 in myeloid cells. This could obscure p38γ/p38δ roles, since TPL2 is essential for regulating inflammation. Here we generated a Mapk12D171A/D171A/Mapk13-/- (p38γ/δKIKO) mouse, expressing kinase-inactive p38γ and lacking p38δ. This mouse exhibited normal TPL2 levels, making it an excellent tool to elucidate specific p38γ/p38δ functions. p38γ/δKIKO mice showed a reduced inflammatory response and less susceptibility to LPS-induced septic shock and Candida albicans infection than wild-type mice. Gene expression analyses in LPS-activated WT and p38γ/δKIKO macrophages revealed that p38γ/p38δ regulated numerous genes implicated in innate immune response. Additionally, phospho-proteomic analyses and in vitro kinase assays showed that the transcription factor myocyte enhancer factor-2D (MEF2D) was phosphorylated at Ser444 via p38γ/p38δ. Mutation of MEF2D Ser444 to the non-phosphorylatable residue Ala increased its transcriptional activity and the expression of Nos2 and Il1b mRNA. These results suggest that p38γ/p38δ govern innate immune responses by regulating MEF2D phosphorylation and transcriptional activity.
Original language | English |
---|---|
Article number | e86200 |
Number of pages | 23 |
Journal | eLife |
Volume | 12 |
Early online date | 17 Jul 2023 |
DOIs | |
Publication status | Published - 03 Aug 2023 |
Keywords
- biochemistry
- chemical biology
- immunology
- inflammation
- mouse