Parasitic peptides! The structure and function of neuropeptides in parasitic worms

T.A. Day, Aaron Maule

Research output: Contribution to journalArticle

75 Citations (Scopus)

Abstract

Parasitic worms come from two very different phyla-Platyhelminthes (flatworms) and Nematoda (roundworms). Although both phyla possess nervous systems with highly developed peptidergic components. there are key differences in the structure and action of native neuropeptides in the two groups. For example, the most abundant neuropeptide known in platyhelminths is the pancreatic polypeptide-like neuropeptide F, whereas the most prevalent neuropeptides in nematodes an FMRFamide-related peptides (FaRPs), which are also present in platyhelminths. With respect to neuropeptide diversity, platyhelminth species possess only one or two distinct FaRPs, whereas nematodes have upwards of 50 unique FaRPs. FaRP bioactivity in platyhelminths appears to be restricted to myoexcitation, whereas both excitatory and inhibitory effects have been reported in nematodes. Recently interest has focused on the peptidergic signaling systems of both phyla because elucidation of these systems will do much to clarify the basic biology of the worms and because the peptidergic systems hold the promise of yielding novel targets for a new generation of antiparasitic drugs. (C) 1999 Elsevier Science Inc. All rights reserved.
Original languageEnglish
Pages (from-to)999-1019
Number of pages21
JournalPeptides
Volume20
Issue number8
Publication statusPublished - 1999

ASJC Scopus subject areas

  • Biochemistry
  • Endocrinology
  • Physiology
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Parasitic peptides! The structure and function of neuropeptides in parasitic worms'. Together they form a unique fingerprint.

  • Cite this