Pharmacogenomic Profiling and Pathway Analyses Identify MAPK-Dependent Migration as an Acute Response to SN38 in p53 Null and p53-Mutant Colorectal Cancer Cells.

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

The topoisomerase I inhibitor irinotecan is used to treat advanced colorectal cancer and has been shown to have p53-independent anticancer activity. The aim of this study was to identify the p53-independent signaling mechanisms activated by irinotecan. Transcriptional profiling of isogenic HCT116 p53 wild-type and p53 null cells was carried out following treatment with the active metabolite of irinotecan, SN38. Unsupervised analysis methods showed that p53 status had a highly significant impact on gene expression changes in response to SN38. Pathway analysis indicated that pathways involved in cell motility [adherens junction, focal adhesion, mitogen-activated protein kinase (MAPK), and regulation of the actin cytoskeleton] were significantly activated in p53 null cells, but not p53 wild-type cells, following SN38 treatment. In functional assays, SN38 treatment increased the migratory potential of p53 null and p53-mutant colorectal cancer cell lines, but not p53 wild-type lines. Moreover, p53 null SN38-resistant cells were found to migrate at a faster rate than parental drug-sensitive p53 null cells, whereas p53 wild-type SN38-resistant cells failed to migrate. Notably, cotreatment with inhibitors of the MAPK pathway inhibited the increased migration observed following SN38 treatment in p53 null and p53-mutant cells. Thus, in the absence of wild-type p53, SN38 promotes migration of colorectal cancer cells, and inhibiting MAPK blocks this potentially prometastatic adaptive response to this anticancer drug.
Original languageEnglish
Pages (from-to)1724-34
Number of pages11
JournalClinical Cancer Research
Volume11
Issue number8
DOIs
Publication statusPublished - Aug 2012

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Pharmacogenomic Profiling and Pathway Analyses Identify MAPK-Dependent Migration as an Acute Response to SN38 in p53 Null and p53-Mutant Colorectal Cancer Cells.'. Together they form a unique fingerprint.

Cite this