Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system

A. Beceiro, M. Doumith, M. Hornsey, H. Dhanji, H. Chart, D.M. Livermore, N. Woodford, J. Aranda, G. Bou, E. Llobet, J.A. Bengoechea

Research output: Contribution to journalArticlepeer-review

236 Citations (Scopus)

Abstract

Colistin resistance is rare in Acinetobacter baumannii, and little is known about its mechanism. We investigated the role of PmrCAB in this trait, using (i) resistant and susceptible clinical strains, (ii) laboratory-selected mutants of the type strain ATCC 19606 and of the clinical isolate ABRIM, and (iii) a susceptible/resistant pair of isogenic clinical isolates, Ab15/133 and Ab15/132, isolated from the same patient. pmrAB sequences in all the colistin-susceptible isolates were identical to reference sequences, whereas resistant clinical isolates harbored one or two amino acid replacements variously located in PmrB. Single substitutions in PmrB were also found in resistant mutants of strains ATCC 19606 and ABRIM and in the resistant clinical isolate Ab15/132. No mutations in PmrA or PmrC were found. Reverse transcriptase (RT)-PCR identified increased expression of pmrA (4- to 13-fold), pmrB (2- to 7-fold), and pmrC (1- to 3-fold) in resistant versus susceptible organisms. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry showed the addition of phosphoethanolamine to the hepta-acylated form of lipid A in the resistant variants and in strain ATCC 19606 grown under low-Mg induction conditions. pmrB gene knockout mutants of the colistin-resistant ATCC 19606 derivative showed >100-fold increased susceptibility to colistin and 5-fold decreased expression of pmrC; they also lacked the addition of phosphoethanolamine to lipid A. We conclude that the development of a moderate level of colistin resistance in A. baumannii requires distinct genetic events, including (i) at least one point mutation in pmrB, (ii) upregulation of pmrAB, and (iii) expression of pmrC, which lead to addition of phosphoethanolamine to lipid A.
Original languageEnglish
Pages (from-to)3370-3379
Number of pages10
JournalAntimicrobial Agents and Chemotherapy
Volume55
Issue number7
DOIs
Publication statusPublished - 01 Jul 2011

Bibliographical note

MEDLINE® is the source for the MeSH terms of this document.

Fingerprint

Dive into the research topics of 'Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system'. Together they form a unique fingerprint.

Cite this