Photoswitchable gRNAs for spatiotemporally controlled CRISPR-Cas-based genomic regulation

Elena V. Moroz-Omori, Dwiantari Satyapertiwi, Marie-Christine Ramel, Håkon Høgset, Ilona K. Sunyovszki, Ziqian Liu, Jonathan P. Wojciechowski, Yueyun Zhang, Christopher L. Grigsby, Liliana Brito, Laurence Bugeon, Margaret J. Dallman, Molly M. Stevens*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)
4 Downloads (Pure)

Abstract

The recently discovered CRISPR-Cas gene editing system and its derivatives have found numerous applications in fundamental biology research and pharmaceutical sciences. The need for precise external control over the gene editing and regulatory events has driven the development of inducible CRISPR-Cas systems. While most of the light-controllable CRISPR-Cas systems are based on protein engineering, we developed an alternative synthetic approach based on modification of crRNA/tracrRNA duplex (guide RNA or gRNA) with photocaging groups, preventing the gRNA from recognizing its genome target sequence until its deprotection is induced within seconds of illumination. This approach relies on a straightforward solid-phase synthesis of the photocaged gRNAs, with simpler purification and characterization processes in comparison to engineering a light-responsive protein. We have demonstrated the feasibility of photocaging of gRNAs and light-mediated DNA cleavage upon brief exposure to light in vitro. We have achieved light-mediated spatiotemporally resolved gene editing as well as gene activation in cells, whereas photocaged gRNAs showed virtually no detectable gene editing or activation in the absence of light irradiation. Finally, we have applied this system to spatiotemporally control gene editing in zebrafish embryos in vivo, enabling the use of this strategy for developmental biology and tissue engineering applications.

Original languageEnglish
Pages (from-to)695-703
JournalACS Central Science
Volume6
Issue number5
Early online date01 Apr 2020
DOIs
Publication statusPublished - 27 May 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Photoswitchable gRNAs for spatiotemporally controlled CRISPR-Cas-based genomic regulation'. Together they form a unique fingerprint.

Cite this