Power Modeling and Capping for Heterogeneous ARM/FPGA SoCs

Yun Wu*, Jose Nunez-Yanez, Roger Woods, Dimitrios S. Nikolopoulos

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)


Low-power processors and accelerators that were originally designed for the embedded systems market are emerging as building blocks for servers. Power capping has been actively explored as a technique to reduce the energy footprint of high-performance processors. The opportunities and limitations of power capping on the new low-power processor and accelerator ecosystem are less understood. This paper presents an efficient power capping and management infrastructure for heterogeneous SoCs based on hybrid ARM/FPGA designs. The infrastructure coordinates dynamic voltage and frequency scaling with task allocation on a customised Linux system for the Xilinx Zynq SoC. We present a compiler-assisted power model to guide voltage and frequency scaling, in conjunction with workload allocation between the ARM cores and the FPGA, under given power caps. The model achieves less than 5% estimation bias to mean power consumption. In an FFT case study, the proposed power capping schemes achieve on average 97.5% of the performance of the optimal execution and match the optimal execution in 87.5% of the cases, while always meeting power constraints.
Original languageEnglish
Title of host publicationProceedings of the 2014 International Conference on Field-Programmable Technology (FPT)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Number of pages4
ISBN (Electronic)9781479962457
ISBN (Print)9781479962440
Publication statusPublished - Dec 2014
Event13th International Conference on Field-Programmable Technology, FPT 2014 - Shanghai, China
Duration: 10 Dec 201412 Dec 2014


Conference13th International Conference on Field-Programmable Technology, FPT 2014


Dive into the research topics of 'Power Modeling and Capping for Heterogeneous ARM/FPGA SoCs'. Together they form a unique fingerprint.

Cite this