Abstract
This work proposes a novel approach to compute transonic limit-cycle oscillations using high-fidelity analysis. Computational-Fluid-Dynamics based harmonic balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling harmonic balance methods to accurately capture limit-cycle oscillations; this is achieved by defining a frequency-updating procedure based on a coupled computational-fluid-dynamics/computational-structural-dynamics harmonic balance formulation to find the limit-cycle oscillation condition. A pitch/plunge airfoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both limit-cycle oscillation amplitude and frequency while producing at least a one-order-of-magnitude reduction in computational time.
Original language | English |
---|---|
Pages (from-to) | 2040-2051 |
Number of pages | 12 |
Journal | AIAA Journal |
Volume | 53 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2015 |
Keywords
- Aeroelasticity
- Harmonic Balance
- CFD
- Transonic
ASJC Scopus subject areas
- Aerospace Engineering
- Computational Mechanics
Fingerprint Dive into the research topics of 'Prediction of Transonic Limit-Cycle Oscillations Using an Aeroelastic Harmonic Balance Method'. Together they form a unique fingerprint.
Datasets
-
Results Data Set for Prediction of Transonic Limit-Cycle Oscillations Using an Aeroelastic Harmonic Balance Method
Marques, S. (Creator) & Yao, W. (Contributor), Queen's University Belfast, 30 Sep 2015
DOI: 10.17034/382f52a2-cb29-4435-b8fd-88667b1d0613
Dataset
File