TY - JOUR
T1 - Probing a 3,4'-bis-guanidinium diaryl derivative as an allosteric inhibitor of the Ras pathway
AU - Diez-Cecilia , Elena
AU - Carson, Robbie
AU - Kelly, Brendan
AU - Van Schaeybroeck, Sandra
AU - Murray, James T.
AU - Rozas, Isabel
PY - 2015/10/1
Y1 - 2015/10/1
N2 - Mutations in the Ras-pathway occur in 40–45% of colorectal cancer patients and these are refractory to treatment with anti-EGFR-targeted therapies. With this in mind, we have studied novel guanidinium- based compounds with demonstrated ability to inhibit protein kinases. We have performed docking stud- ies with several proteins involved in the Ras-pathway and evaluated 3,40-bis-guanidinium derivatives as inhibitors of B-Raf. Compound 3, the most potent in this series, demonstrated strong cytotoxicity in WTB-Raf colorectal cancer cells and also cells with V600EB-Raf mutations. Cell death was induced by apop- tosis, detected by cleavage of PARP. Compound 3 also potently inhibited ERK1/2 signalling, inhibited EGFR activation, as well as Src, STAT3 and AKT phosphorylation. Mechanistically, compound 3 did not inhibit ATP binding to B-Raf, but direct assay of B-Raf activity was inhibited in vitro. Summarizing, we have identified a novel B-Raf type-III inhibitor that exhibits potent cellular cytotoxicity
AB - Mutations in the Ras-pathway occur in 40–45% of colorectal cancer patients and these are refractory to treatment with anti-EGFR-targeted therapies. With this in mind, we have studied novel guanidinium- based compounds with demonstrated ability to inhibit protein kinases. We have performed docking stud- ies with several proteins involved in the Ras-pathway and evaluated 3,40-bis-guanidinium derivatives as inhibitors of B-Raf. Compound 3, the most potent in this series, demonstrated strong cytotoxicity in WTB-Raf colorectal cancer cells and also cells with V600EB-Raf mutations. Cell death was induced by apop- tosis, detected by cleavage of PARP. Compound 3 also potently inhibited ERK1/2 signalling, inhibited EGFR activation, as well as Src, STAT3 and AKT phosphorylation. Mechanistically, compound 3 did not inhibit ATP binding to B-Raf, but direct assay of B-Raf activity was inhibited in vitro. Summarizing, we have identified a novel B-Raf type-III inhibitor that exhibits potent cellular cytotoxicity
U2 - 10.1016/j.bmcl.2015.07.082
DO - 10.1016/j.bmcl.2015.07.082
M3 - Article
SN - 0960-894X
VL - 25
SP - 4287
EP - 4292
JO - Bioorganic and Medicinal Chemistry Letters
JF - Bioorganic and Medicinal Chemistry Letters
IS - 19
ER -