TY - JOUR
T1 - Prospective patient stratification into robust cancer-cell intrinsic subtypes from colorectal cancer biopsies
AU - Alderdice, Matthew
AU - Richman, Susan D
AU - Gollins, Simon
AU - Stewart, Peter
AU - Hurt, Chris
AU - Adams, Richard
AU - McCorry, Amy
AU - Roddy, Aideen
AU - Vimalachandran, Dale
AU - Isella, Claudio
AU - Medico, Enzo
AU - Maughan, Tim
AU - McArt, Darragh G
AU - Lawler, Mark
AU - Dunne, Philip D
N1 - This article is protected by copyright. All rights reserved.
PY - 2018/2/7
Y1 - 2018/2/7
N2 - Colorectal cancer (CRC) biopsies underpin accurate diagnosis, but are also relevant for patient stratification in molecularly-guided clinical trials. The consensus molecular subtypes (CMS) and colorectal cancer intrinsic subtypes (CRIS) transcriptional signatures have potential clinical utility for improving prognostic/predictive patient assignment. However, their ability to provide robust classification, particularly in pre-treatment biopsies from multiple regions or at different time points remains untested. In this study, we undertook a comprehensive assessment of the robustness of CRC transcriptional signatures, including CRIS and CMS, using a range of tumour sampling methodologies currently employed in clinical and translational research. These include analyses using (i) laser-capture microdissected CRC tissue, (ii) eight publically available rectal cancer biopsy data sets (n=543), (iii) serial biopsies (from AXEBeam trial, NCT00828672; n=10), (iv) multi-regional biopsies from colon tumours (n=29 biopsies, n=7 tumours) and (v) pre-treatment biopsies from the phase II rectal cancer trial COPERNCIUS (NCT01263171; n=44). Compared to previous results obtained using CRC resection material, we demonstrate that CMS classification in biopsy tissue is significantly less capable of reliably classifying patient subtype (43% unknown in biopsy versus 13% unknown in resections, p=0.0001). In contrast, there was no significant difference in classification rate between biopsies and resections when using the CRIS classifier. Additionally, we demonstrated that CRIS provides significantly better spatially- and temporally- robust classification of molecular subtypes in CRC primary tumour tissue compared to CMS (p= 0.003 and p=0.02, respectively). These findings have potential to inform ongoing biopsy-based patient stratification in CRC, enabling robust and stable assignment of patients into clinically-informative arms of prospective multi-arm, multi-stage clinical trials.
AB - Colorectal cancer (CRC) biopsies underpin accurate diagnosis, but are also relevant for patient stratification in molecularly-guided clinical trials. The consensus molecular subtypes (CMS) and colorectal cancer intrinsic subtypes (CRIS) transcriptional signatures have potential clinical utility for improving prognostic/predictive patient assignment. However, their ability to provide robust classification, particularly in pre-treatment biopsies from multiple regions or at different time points remains untested. In this study, we undertook a comprehensive assessment of the robustness of CRC transcriptional signatures, including CRIS and CMS, using a range of tumour sampling methodologies currently employed in clinical and translational research. These include analyses using (i) laser-capture microdissected CRC tissue, (ii) eight publically available rectal cancer biopsy data sets (n=543), (iii) serial biopsies (from AXEBeam trial, NCT00828672; n=10), (iv) multi-regional biopsies from colon tumours (n=29 biopsies, n=7 tumours) and (v) pre-treatment biopsies from the phase II rectal cancer trial COPERNCIUS (NCT01263171; n=44). Compared to previous results obtained using CRC resection material, we demonstrate that CMS classification in biopsy tissue is significantly less capable of reliably classifying patient subtype (43% unknown in biopsy versus 13% unknown in resections, p=0.0001). In contrast, there was no significant difference in classification rate between biopsies and resections when using the CRIS classifier. Additionally, we demonstrated that CRIS provides significantly better spatially- and temporally- robust classification of molecular subtypes in CRC primary tumour tissue compared to CMS (p= 0.003 and p=0.02, respectively). These findings have potential to inform ongoing biopsy-based patient stratification in CRC, enabling robust and stable assignment of patients into clinically-informative arms of prospective multi-arm, multi-stage clinical trials.
KW - Journal Article
U2 - 10.1002/path.5051
DO - 10.1002/path.5051
M3 - Article
C2 - 29412457
SP - 1
EP - 33
JO - Journal of Pathology
JF - Journal of Pathology
SN - 0022-3417
ER -