Abstract
One specific technological advance in transdermal drug delivery is the development of dissolving microneedles (DMNs), which efficiently deliver therapeutics through a rapid dissolution of polymers after penetration into the skin. However, there is a limited range of water soluble, biodegradable polymers that can be used to manufacture DMN. Here, we report for the first time, the preparation and characterisation of a DMN system from the carbohydrate biopolymer, pullulan (PL). PL gels, of varying concentration, were studied for viscosity, film formation properties, and subsequently, microneedle formation. Model molecules and protein/peptide were loaded into PL DMN and characterised. The stability of model biomolecules, such as FITC-BSA and insulin, following DMN manufacture were assessed using circular dichroism. Ex-vivo porcine skin permeation studies using Franz diffusion cell apparatus for Flu-Na and FITC-BSA loaded PL-DMN were conducted. This study demonstrates that PL DMNs may serve as a promising tool for efficient transdermal drug delivery.
Original language | English |
---|---|
Pages (from-to) | 290-298 |
Journal | International Journal of Biological Macromolecules |
Volume | 146 |
Early online date | 26 Dec 2019 |
DOIs | |
Publication status | Published - 01 Mar 2020 |
Fingerprint
Dive into the research topics of 'Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules'. Together they form a unique fingerprint.Student theses
-
Microneedle-mediated transdermal drug delivery of biotherapeutic macromolecules
Courtenay, A. (Author), Donnelly, R. (Supervisor), McCrudden, M. (Supervisor) & Woolfson, D. (Supervisor), Dec 2021Student thesis: Doctoral Thesis › Doctor of Philosophy
File