Abstract
Cellulose, hemicellulose and lignin are the main components of biomass. This work presents research into the pyrolysis/gasification of all three main components of biomass, in order to evaluate and compare their hydrogen production and also understand their gasification processes. A fixed bed, two-stage reaction system has been used employing various nickel-based catalysts. Gas concentration (CO, H2, CO, CO2 and CH 4) was analysed for the produced non-condensed gases. Oil byproducts were analysed by gas chromatography/mass spectrometry (GC/MS). Various techniques such as X-Ray Diffraction (XRD), scanning electron microscopy (SEM) coupled to an energy dispersive X-ray spectroscopy (EDXS), temperature- programmed oxidation (TPO) were applied to characterize the fresh or reacted catalysts. The experimental results show that the lignin sample generates the highest residue fraction (52.0 wt.%) among the three biomass components. When NiAZnAAl (1:1) catalyst was used in the gasification process, gas yield was increased from 62.4 to 68.2 wt.% for cellulose, and from 25.2 to 50.0 wt.% for the pyrolysis/gasification of lignin. Hydrogen production was increased from 7.0 to 18.7 (m mol g 1 sample) when the NiAZnAAl (1:1) catalyst was introduced in the pyrolysis/gasification of cellulose. Among the investigated catalysts, NiACaAAl (1:1) was found to be the most effective for hydrogen production from cellulose pyrolysis/gasification.
Original language | English |
---|---|
Pages (from-to) | 697-706 |
Number of pages | 10 |
Journal | Fuel |
Volume | 106 |
DOIs | |
Publication status | Published - 01 Jan 2013 |
Externally published | Yes |
Keywords
- Biomass
- Cellulose
- Gasification
- Hemicellulose
- Lignin
ASJC Scopus subject areas
- General Chemical Engineering
- Fuel Technology
- Energy Engineering and Power Technology
- Organic Chemistry