Abstract
In human-robot collaboration, multi-agent domains, or single-robot manipulation with multiple end-effectors, the activities of the involved parties are naturally concurrent. Such domains are also naturally relational as they involve objects, multiple agents, and models should generalize over objects and agents. We propose a novel formalization of relational concurrent activity processes that allows us to transfer methods from standard relational MDPs, such as Monte-Carlo planning and learning from demonstration, to concurrent cooperation domains. We formally compare the formulation to previous propositional models of concurrent decision making and demonstrate planning and learning from demonstration methods on a real-world human-robot assembly task.
Original language | English |
---|---|
Title of host publication | 2016 IEEE International Conference on Robotics and Automation (ICRA): Proceedings |
Subtitle of host publication | ICRA |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 5505-5511 |
Number of pages | 7 |
ISBN (Electronic) | 978-1-4673-8026-3 |
DOIs | |
Publication status | Published - 09 Jun 2016 |