TY - JOUR
T1 - Retrofit versus new-build house using life-cycle assessment
AU - McGrath, Teresa
AU - Nanukuttan, Sreejith
AU - Owens, Kieran
AU - Basheer, Muhammed
AU - Keig, Peter
PY - 2013/6
Y1 - 2013/6
N2 - This paper reports the findings of research on the environmental performance of two case-study houses, a retrofit and new build. The retrofit was completed to a Passivhaus standard while the new build was completed to current Irish building regulations. Environmental performance of the retrofit and new build was measured using life-cycle assessments, examining the assembly, operational and end-of-life stage over life spans of 50 and 80 years. Using primary information, life-cycle assessment software and life-cycle assessment databases the environmental impacts of each stage were modelled. The operational stage of both case studies was found to be the source of the most significant environmental damage, followed by the assembly and the end-of-life stage respectively. The relative importance of the assembly and end-of-life stage decreased as the life span increased. It was found that the retrofit house studied outperformed the new build in the assembly and operational stage, whereas the new build performed better in the end-of-life stage; however, this is highly sensitive, depending on the standards to which both are completed. Operational energy savings pre- and post-retrofit were significant, indicating the future potential for adoption of high-quality retrofitting practices.
AB - This paper reports the findings of research on the environmental performance of two case-study houses, a retrofit and new build. The retrofit was completed to a Passivhaus standard while the new build was completed to current Irish building regulations. Environmental performance of the retrofit and new build was measured using life-cycle assessments, examining the assembly, operational and end-of-life stage over life spans of 50 and 80 years. Using primary information, life-cycle assessment software and life-cycle assessment databases the environmental impacts of each stage were modelled. The operational stage of both case studies was found to be the source of the most significant environmental damage, followed by the assembly and the end-of-life stage respectively. The relative importance of the assembly and end-of-life stage decreased as the life span increased. It was found that the retrofit house studied outperformed the new build in the assembly and operational stage, whereas the new build performed better in the end-of-life stage; however, this is highly sensitive, depending on the standards to which both are completed. Operational energy savings pre- and post-retrofit were significant, indicating the future potential for adoption of high-quality retrofitting practices.
U2 - 10.1680/ensu.11.00026
DO - 10.1680/ensu.11.00026
M3 - Article
VL - 166
SP - 122
EP - 137
JO - Proceedings of the Institution of Civil Engineers - Engineering Sustainability
JF - Proceedings of the Institution of Civil Engineers - Engineering Sustainability
SN - 1478-4629
IS - 3
ER -