Scopoletin 8-hydroxylase a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis

Joanna Siwinska, Kinga Siatkowska, Alexandre Olry, Jeremy Grosjean, Alain Hehn, Frederic Bourgaud, Andrew A Meharg, Manus Carey, Ewa Lojkowska, Anna Ihnatowicz

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)
136 Downloads (Pure)


Iron (Fe) deficiency is a serious agricultural problem, particularly for alkaline soils. Secretion of coumarins by Arabidopsis thaliana roots is induced under Fe-deficiency. An essential enzyme for the biosynthesis of major Arabidopsis coumarins, scopoletin and its derivatives, is Feruloyl-CoA 6'-Hydroxylase1 (F6'H1), that belongs to a large enzyme family of the 2-oxoglutarate and Fe(II)-dependent dioxygenases. Another member of this family, which is a close homologue of F6'H1, and is encoded by a strongly Fe-responsive gene, At3g12900, is functionally characterized in the presented work. We purified the At3g12900 protein heterologously expressed in Escherichia coli and demonstrated that it is involved in the conversion of scopoletin into fraxetin, via hydroxylation at the C8-position, scopoletin 8-hydroxylase (S8H). Its function in plant cells was confirmed by the transient expression of S8H protein in Nicotiana benthamiana leaves, followed by the metabolite profiling and the biochemical and ionomic characterization of Arabidopsis s8h knockout lines grown under various Fe regimes. Our results indicate that S8H is involved in coumarin biosynthesis, as part of mechanisms used by plants to assimilate Fe.

Original languageEnglish
Pages (from-to)1735-1748
JournalJournal of experimental botany
Issue number7
Early online date18 Jan 2018
Publication statusEarly online date - 18 Jan 2018
Externally publishedYes


  • Journal Article


Dive into the research topics of 'Scopoletin 8-hydroxylase a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis'. Together they form a unique fingerprint.

Cite this