Searching for thermal inversion agents in the transmission spectrum of KELT-20b/MASCARA-2b: detection of neutral iron and ionised calcium H&K lines

Stevanus K Nugroho*, Neale P Gibson, Ernst J W de Mooij, Chris A. Watson, Hajime Kawahara, Stephanie Merritt

*Corresponding author for this work

Research output: Contribution to journalArticle

2 Citations (Scopus)
21 Downloads (Pure)

Abstract

We analyse the transmission spectra of KELT-20b/MASCARA-2b to search for possible thermal inversion agents. The data consist of three transits obtained using HARPSN and one using CARMENES. We removed stellar and telluric lines before cross-correlating the residuals with spectroscopic templates produced using a 1D plane-parallel model, assuming an isothermal atmosphere and chemical equilibrium at solar metallicity. Using a likelihood- mapping method, we detect FeI at > 13σ, CaII H&K at > 6σ and confirm the previous detections of FeII, CaII IR Triplet, and NaI D. The detected signal of FeI is shifted by −3.4 ± 0.4 km s−1 from the planetary rest frame, which indicates a strong day–night wind. Our likelihood-mapping technique also reveals that the absorption features of the detected species extend to different altitudes in the planet’s atmosphere. Assuming that the line lists are accurate, we do not detect other potential thermal inversion agents (NaH, MgH, AlO, SH, CaO, VO, FeH, and TiO) suggesting that non-chemical equilibrium mechanisms (e.g. a cold- trap) might have removed Ti- and V-bearing species from the upper atmosphere. Our results, therefore, show that KELT-20b/MASCARA-2b cannot possess an inversion layer caused by a TiO/VO-related mechanism. The presence of an inversion layer would therefore likely be caused by metal atoms such as Fe I and Fe II. Finally, we report a double-peak structure in the Fe I signal in all of our data sets that could be a signature of atmospheric dynamics. However, further investigation is needed to robustly determine the origin of the signal.
Original languageEnglish
Pages (from-to)504-522
Number of pages19
JournalMonthly Notices of the Royal Astronomical Society
Volume496
Issue number1
Early online date17 Jun 2020
DOIs
Publication statusPublished - Jul 2020

Keywords

  • methods: data analysis
  • techniques: spectroscopic
  • stars: individual KELT- 20/MASCARA-2
  • stars: planetary systems
  • planets and satellites: atmospheres, gaseous planets.

Fingerprint Dive into the research topics of 'Searching for thermal inversion agents in the transmission spectrum of KELT-20b/MASCARA-2b: detection of neutral iron and ionised calcium H&K lines'. Together they form a unique fingerprint.

  • Cite this